【題目】命題“任意x∈R,2x≤0”的否定是(
A.不存在x∈R,2x>0
B.存在x∈R,2x>0
C.對(duì)任意的x∈R,2x≤0
D.對(duì)任意的x∈R,2x>0

【答案】B
【解析】解:因?yàn)槿Q命題的否定是特稱命題.所以,命題“任意x∈R,2x≤0”的否定是:存在x∈R,2x>0. 故選:B.
直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(
A.第一象限角一定不是負(fù)角
B.小于90°的角一定是銳角
C.鈍角一定是第二象限的角
D.終邊相同的角一定相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x cos x﹣sin x的導(dǎo)數(shù)為(
A.x sin x
B.﹣x sin x
C.x cos x
D.﹣xcos x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x(1+x),則x<0時(shí),f(x)的表達(dá)式是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察以下5個(gè)等式: ﹣1=﹣1
﹣1+3=2
﹣1+3﹣5=﹣3
﹣1+3﹣5+7=4
﹣1+3﹣5+7﹣9=﹣5

照以上式子規(guī)律:
(1)寫出第6個(gè)等式,并猜想第n個(gè)等式;(n∈N*
(2)用數(shù)學(xué)歸納法證明上述所猜想的第n個(gè)等式成立.(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an},則“a1<a3”是“an<an+1”的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于①“很可能發(fā)生的”,②“一定發(fā)生的”,③“可能發(fā)生的”,④“不可能發(fā)生的”,⑤“不太可能發(fā)生的”這5種生活現(xiàn)象,發(fā)生的概率由大到小排列為(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)整數(shù)n≥4,集合X={1,2,3,…,n}.令集合S={(x,y,z)|x,y,z∈X,且三條件x<y<z,y<z<x,z<x<y恰有一個(gè)成立}.若(x,y,z)和(z,w,x)都在S中,則下列選項(xiàng)正確的是(
A.(y,z,w)∈S,(x,y,w)S
B.(y,z,w)∈S,(x,y,w)∈S
C.(y,z,w)S,(x,y,w)∈S
D.(y,z,w)S,(x,y,w)S

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)α,β為兩個(gè)不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個(gè)命題:
①若α∥β,lα,則l∥β; ②若mα,nα,m∥β,n∥β,則α∥β; 
③若l∥α,l⊥β,則α⊥β; ④若m、n是異面直線,m∥α,n∥α,且l⊥m,l⊥n,則l⊥α.
其中真命題的序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案