設(shè)>1,若對(duì)于任意的,都有滿足方程,這時(shí)的取值集合為
A.{|1<≤2} B.{|≥2} C.{|2≤≤3} D.{2,3}
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省盧氏一高高三適應(yīng)性考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分) 設(shè)函數(shù)f(x)的定義域是R,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)f(n),且當(dāng)x>0時(shí),0<f(x)<1。
(1)求證:f(0)=1,且當(dāng)x<0時(shí),有f(x)>1;
(2)判斷f(x)在R上的單調(diào)性;
⑶設(shè)集合A={(x,y)|f(x2)f(y2)>f(1)},集合B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市高三上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f -1(x)能確定數(shù)列{bn},bn= f –1(n),若對(duì)于任意nÎN*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Sn=(cn+).寫出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=,Dn是數(shù)列{dn}的前n項(xiàng)之和,且Dn>log a (1-2a)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年河南省長(zhǎng)葛市高二下學(xué)期3月月考數(shù)學(xué)理卷A 題型:解答題
(本小題滿分14分)
已知函數(shù)f(x)=-kx,.
(1)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間;
(2)若k>0,且對(duì)于任意確定實(shí)數(shù)k的取值范圍;[來源:學(xué)&科&網(wǎng)]
(3)設(shè)函數(shù)F(x)=f(x)+f(-x),求證:F(1)F(2)…F(n)>()。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)定義域?yàn)镽,當(dāng)x<0時(shí),f(x)>1,且對(duì)于任意的x∈R,有f(x + y)=f(x)•f(y)成立.數(shù)列{an}滿足a1=f(0),且f()=.問:是否存在正數(shù)k,使(1+均成立,若存在,求出k的最大值并證明,否則說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com