已知向量
m
=(1,
3
),
n
=(cosx,sinx),函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈(0,
π
2
)時(shí),求f(x)的最大值及相應(yīng)x的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的圖像與性質(zhì),平面向量及應(yīng)用
分析:首先利用向量的數(shù)量積的坐標(biāo)運(yùn)算求出函數(shù)的解析式,然后利用三角函數(shù)恒等變形將解析式化為一個(gè)角的一個(gè)三角函數(shù)的形式,最后求相關(guān)性質(zhì).
解答: 解:(1)(6分)∵f(x)=
m
n
=1•cosx+
3
•sinx=
3
sinx+cosx=2sin(x+
π
6
)

∴函數(shù)f(x)的最小正周期T=2π;
(2)(6分)由(1)知f(x)=2sin(x+
π
6
)

x∈(0,
π
2
)
,∴x+
π
6
∈(
π
6
,
3
)

∴當(dāng)x=
π
3
時(shí),f(x)有最大值為2.
點(diǎn)評(píng):本題考查了向量的數(shù)量積的坐標(biāo)運(yùn)算以及三角函數(shù)的恒等變形求最值以及周期.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知 0<α<
π
4
,0<β<
π
4
,且 3sinβ=sin(2α+β),4tan
α
2
=1-tan2
α
2
,求α+β的值.
(2)化簡(jiǎn)求值:
1-
3
tan10°
3
+tan10°
+
3
-tan20°
1+
3
tan20°
+tan20°tan40°tan60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高二的一個(gè)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖圖1和頻率分布直方圖圖2都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:

(Ⅰ)求分?jǐn)?shù)在[50,60)的頻率及全班人數(shù);
(Ⅱ)求分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(Ⅲ)試用此頻率分布直方圖估計(jì)這組數(shù)據(jù)的眾數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,若a-bi=(1+i)i3(其中i為虛數(shù)單位),則(  )
A、a=1,b=1
B、a=1,b=-1
C、a=-1,b=1
D、a=-1,b=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=|x-m|+|x+3|的圖象與直線y=2有公共點(diǎn),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知
2
3
|
AB
|2=(
CA
+
CB
)•
AB
,則
tanA
tanB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在定義域x∈[0,3]上是增函數(shù),若f(m-1)+f(m)>0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-
1
2
ax2-bx
(1)當(dāng)a=b=
1
2
時(shí),求f(x)的最大值;
(2)令F(x)=f(x)+
1
2
ax2+bx+
a
x
(0<x≤3),其圖象上任意一點(diǎn)P(x0,y0)處的切線的斜率k≤
1
2
恒成立,求a實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+
a
x
 (x≠0,常數(shù)a=R),若a=0,f(x)=x2+
a
x
為偶函數(shù),若a≠0,f(x)=x2+
a
x
為非奇非偶函數(shù),若函數(shù)f(x)在[2,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案