(本小題滿分12分)
已知橢圓M的中心為坐標(biāo)原點(diǎn),且焦點(diǎn)在x軸上,若M的一個頂點(diǎn)恰好是拋物線的焦點(diǎn),M的離心率,過M的右焦點(diǎn)F作不與坐標(biāo)軸垂直的直線,交M于A,B兩點(diǎn)。
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)N(t,0)是一個動點(diǎn),且,求實數(shù)t的取值范圍。

(1)   (2)

解析試題分析:(1)橢圓的標(biāo)準(zhǔn)方程:
(2)設(shè),,設(shè)
 
由韋達(dá)定理得   ①



,代入上式整理得:
,由
,將①代入得
所以實數(shù)
考點(diǎn):直線與圓錐曲線的關(guān)系;橢圓的標(biāo)準(zhǔn)方程.
點(diǎn)評:本題主要考查了橢圓的性質(zhì)在橢圓的方程求解中的應(yīng)用,直線與橢圓的相交關(guān)系的應(yīng)用及方程的根與系數(shù)關(guān)系的應(yīng)用,屬于直線與曲線關(guān)系的綜合應(yīng)用

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC。

(1)求AB和OC的長;
(2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(點(diǎn)E與點(diǎn)A、B不重合)。過點(diǎn)E作直線l平行BC,交AC于點(diǎn)D。設(shè)AE的長為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時,求出以點(diǎn)E為圓心,與BC相切的圓的面積(結(jié)果保留)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)已知橢圓的左焦點(diǎn)的坐標(biāo)為,是它的右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn), 的周長等于
(1)求橢圓的方程;
(2)過定點(diǎn)作直線與橢圓交于不同的兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的短軸長等于焦距,橢圓C上的點(diǎn)到右焦點(diǎn)的最短距離為
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)且斜率為的直線交于兩點(diǎn),是點(diǎn)關(guān)于軸的對稱點(diǎn),證明:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
如圖,橢圓長軸端點(diǎn)為,為橢圓中心,為橢圓的右焦點(diǎn),
,.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的上頂點(diǎn)為,直線交橢圓于兩點(diǎn),問:是否存在直線,使點(diǎn)恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知橢圓的兩焦點(diǎn)是,離心率
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上,且,求DPF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖所示,將一矩形花壇擴(kuò)建成一個更大的矩形花壇,要求點(diǎn)在上, 點(diǎn)在上,且對角線過點(diǎn),已知米,米.
(1)要使矩形的面積大于32平方米,則的長應(yīng)在什么范圍內(nèi)?
(2)當(dāng)的長度為多少時,矩形花壇的面積最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,已知點(diǎn)是橢圓的右頂點(diǎn),若點(diǎn)在橢圓上,且滿足.(其中為坐標(biāo)原點(diǎn))

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn),當(dāng)時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求下列各曲線的標(biāo)準(zhǔn)方程
(Ⅰ)實軸長為12,離心率為,焦點(diǎn)在x軸上的橢圓;
(Ⅱ)拋物線的焦點(diǎn)是雙曲線的左頂點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案