已知函數(shù)
(Ⅰ)當(dāng)a=1時(shí),?x∈[1,e]使不等式f(x)≤m,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象恒在直線y=2ax的下方,求實(shí)數(shù)a的取值范圍.
【答案】分析:(I)將a的值代入f(x),求出f(x)的導(dǎo)函數(shù);,將?x∈[1,e]使不等式f(x)≤m轉(zhuǎn)化為f(x)的最小值小于等于m,利用[1,e]上的函數(shù)遞增,求出f(x)的最小值,令最小值小于等于m即可.
(II)將圖象的位置關(guān)系轉(zhuǎn)化為不等式恒成立;通過構(gòu)造函數(shù),對新函數(shù)求導(dǎo),對導(dǎo)函數(shù)的根與區(qū)間的關(guān)系進(jìn)行討論,求出新函數(shù)的最值,求出a的范圍.
解答:解:(I)當(dāng)a=1時(shí),,

可知當(dāng)x∈[1,e]時(shí)f(x)為增函數(shù),
最小值為
要使?x∈[1,e]使不等式f(x)≤m,即f(x)的最小值小于等于m,
故實(shí)數(shù)m的取值范圍是
(2)已知函數(shù)
若在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象恒在直線y=2ax的下方,
等價(jià)于對任意x∈(1,+∞),f(x)<2ax,
恒成立.
設(shè)
即g(x)的最大值小于0.
(1)當(dāng)時(shí),,
為減函數(shù).
∴g(1)=-a-≤0
∴a≥-

(2)a≥1時(shí),
為增函數(shù),
g(x)無最大值,即最大值可無窮大,故此時(shí)不滿足條件.
(3)當(dāng)時(shí),g(x)在上為減函數(shù),在上為增函數(shù),
同樣最大值可無窮大,不滿足題意.綜上.實(shí)數(shù)a的取值范圍是
點(diǎn)評:解決不等式恒成立及不等式有解問題一般都轉(zhuǎn)化為函數(shù)的最值問題,通過導(dǎo)數(shù)求函數(shù)的最值,進(jìn)一步求出參數(shù)的范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(12分)已知函數(shù)

(1)當(dāng)a=1時(shí),證明函數(shù)只有一個(gè)零點(diǎn);

(2)若函數(shù)在區(qū)間(1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)

(1)當(dāng)a=1時(shí),證明函數(shù)只有一個(gè)零點(diǎn);

(2)若函數(shù)在區(qū)間(1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南京市高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若函數(shù)f(x)在(0,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)若a>0,且對任意x1,x2∈(0,+∞),x1≠x2,都有|f(x1)-f(x2)|>2|x1-x2|,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012年學(xué)廣東省梅州市東山中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(I)當(dāng)a=1時(shí),求函數(shù)f (x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a<0且x∈[0,π]時(shí),函數(shù)f (x)的值域是[3,4],求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年重慶市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(I)當(dāng)a=1時(shí),求函數(shù)f (x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a<0且x∈[0,π]時(shí),函數(shù)f (x)的值域是[3,4],求a+b的值.

查看答案和解析>>

同步練習(xí)冊答案