已知數(shù)列{an}滿足a1=3,,數(shù)列{bn}滿足
(1)證明數(shù)列{bn}是等差數(shù)列并求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn
【答案】分析:(1)由,可得,然后檢驗(yàn)bn+1-bn是否為常數(shù)即可證明,進(jìn)而可求其通項(xiàng)
(2)由題意可先求an,結(jié)合數(shù)列的通項(xiàng)的特點(diǎn),考慮利用錯(cuò)位相減求和即可求解
解答:解(1)證明:由,得,
---------------------(2分)
所以數(shù)列{bn}是等差數(shù)列,首項(xiàng)b1=1,公差為-----------(4分)
------------------------(6分)
(2)-------------------------(7分)
∴Sn=a1+a2+…+an=3×1+4×3+…+(n+2)×3n-1----①
-------------------②(9分)
①-②得
=2+1+3+32+…+3n-1-(n+2)×3n=------(11分)
-----------------(12分)
點(diǎn)評(píng):本題主要考查了利用數(shù)列的遞推公式證明等差數(shù)列,及等差數(shù)列的通項(xiàng)公式的應(yīng)用,數(shù)列的錯(cuò)位相減求和方法的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案