【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;
(Ⅱ)已知點設(shè)直線與曲線相交于兩點,求的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邊長為2的等邊和有一內(nèi)角為的直角所在半平面構(gòu)成的二面角,則下列不可能是線段的取值的是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現(xiàn)規(guī)劃在草坪上建一個廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點在⊙O上,A,B,C,D恰是一個正方形的四個頂點.根據(jù)規(guī)劃要求,在A,B,C,D四點處安裝四盞照明設(shè)備,從圓心O點出發(fā),在地下鋪設(shè)4條到A,B,C,D四點線路OA,OB,OC,OD.
(1)若正方形邊長為10米,求廣場的面積;
(2)求鋪設(shè)的4條線路OA,OB,OC,OD總長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè).若在上恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成朱色及黃色,其面積稱為朱實、黃實.由2×勾×股+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+股2=弦2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機(jī)拋擲100顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):,)
A.2B.4C.6D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;
(2)曲線上是否存在不同的兩點,(以上兩點坐標(biāo)均為極坐標(biāo),,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com