(15分)已知函數(shù).
(1)若的切線,函數(shù)處取得極值1,求,,的值;
證明:;
(3)若,且函數(shù)上單調(diào)遞增,
求實(shí)數(shù)的取值范圍。
(1)見解析。(2)
本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
(1)因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823232805466798.png" style="vertical-align:middle;" />的切線,函數(shù)處取得極值1,考查了導(dǎo)數(shù)的幾何意義的運(yùn)用,以及導(dǎo)數(shù)判定函數(shù)單調(diào)性問題,解得結(jié)論。
(2)由,,
.分析得到。
處取得極值1,且
(3)由
構(gòu)造函數(shù)證明恒成立問題。
解:解得,則
,令
,,
.
處取得極值1,且
,故


    綜上:
(2)由

由函數(shù)上單調(diào)遞增,知上恒成立,
上恒成立,
當(dāng)
當(dāng)

,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
已知函數(shù)f(x)=lnx+
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)mR,對(duì)任意的a∈(-l,1),總存在xo∈[1,e],使得不等式ma - (xo)<0成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)證明:ln2 l+ 1n22,+…+ln2 n>∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),試比較的大;
(3)求證:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù)在(0,1)上是增函數(shù).(1)求的取值范圍;
(2)設(shè)),試求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分) 已知函數(shù)處取得極小值.
(1)求m的值。
(2)若上是增函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間和最小值;
(Ⅱ)若函數(shù)上是最小值為,求的值;
(Ⅲ)當(dāng)(其中="2.718" 28…是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè).如果對(duì)任意,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分) 已知:三次函數(shù),在上單調(diào)遞增,在上單調(diào)遞減
(1)求函數(shù)f (x)的解析式;

20070328

 
  (2)求函數(shù)f (x)在區(qū)間[-2,2]的最值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)在區(qū)間上是減函數(shù),則的最小值是(  )  
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案