11.在等差數(shù)列{an}中,若a3+a4+a6+a7=25,則a2+a8=$\frac{25}{2}$.

分析 利用等差數(shù)列的性質(zhì)即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:a3+a7=a4+a6=a2+a8,又a3+a4+a6+a7=25,
則a2+a8=$\frac{1}{2}×25$=$\frac{25}{2}$.
故答案為:$\frac{25}{2}$.

點評 本題考查了等差數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.命題“?x0∈R,log2x0≤0”的否定為?x∈R,均有l(wèi)og2x>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.(1)已知直線l1:2x+(m+1)y+4=0與直線l2:mx+3y-2=0平行,求m的值;
(2)已知直線l1:(a+2)x+(1-a)y-1=0與直線l2:(a-1)x+(2a+3)y+2=0互相垂直,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=3x+x,g(x)=log3x+x,h(x)=log3x-3的零點依次為a,b,c,則( 。
A.c<b<aB.a<b<cC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.圓x2+y2=16上的點到直線x-y=2的距離的最大值是(  )
A.4-$\sqrt{2}$B.16-$\sqrt{2}$C.16+$\sqrt{2}$D.4+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若集合M={0,2,3,7},N={x|x=ab,a∈M,b∈M},則集合N的子集最多有128個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設f(x)是定義在R上的增函數(shù),且對任意x,都有f(-x)+f(x)=0恒成立,如果實數(shù)x,y滿足不等式f(x2-6x)+f(y2-4y+12)≤0,那么$\frac{y-2}{x}$的最大值是( 。
A.1B.2C.$2\sqrt{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=ax-1+1的圖象恒過點(1,2);若對數(shù)函數(shù)g(x)=logbx的圖象經(jīng)過點(3,4),則b=$\root{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知二次函數(shù)f(x)=mx2+(m+2)mx+2為偶函數(shù),求實數(shù)m的值=-2.

查看答案和解析>>

同步練習冊答案