已知橢圓(a>b>0)的離心率e=,連接橢圓的四個頂點得到的菱形的面積為4.

(Ⅰ)求橢圓的方程

(Ⅱ)設直線l與橢圓相交于不同的兩點A,B,已知點A的坐標為(-a,0).

(ⅰ)若|AB|=,求直線l的傾斜角;

(ⅱ)若點Q(0,yo)在線段AB的垂直平分線上,且,求yo的值.

答案:
解析:


提示:

本小題主要考查橢圓的標準方程和幾何性質、直線的方程、兩點間的距離公式、直線的傾斜角、平面向量等基礎知識,考查用代數(shù)方法研究圓錐曲線的性質及數(shù)形結合的思想,考查綜合分析與運算能力.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓(ab>0)的離心率為,,則橢圓方程為(  )

A.                B.

C.                D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓(ab>0)的兩個焦點為F1,F2,過F2作垂直于x軸的直線與橢圓相交,一個交點為P,若∠PF1F2=30°,那么橢圓的離心率是(  )

A.sin30°B.cos30°C.tan30°D.sin45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓 (a>b>0),A、B是橢圓上的兩點,線段AB的垂直平分線與x軸相交于點P(x0,0).證明

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省協(xié)作體高三5月第二次聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

已知橢圓(a>b>0)拋物線,從每條曲線上取兩個點,將其坐標記錄于下表中:

4

1

2

4

2

(1)求的標準方程;(2)四邊形ABCD的頂點在橢圓上,且對角線AC、BD過原點O,若,

(i) 求的最值.

(ii) 求四邊形ABCD的面積;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年四川省綿陽市高三第二次月考文科數(shù)學試卷 題型:解答題

已知橢圓(a>b>0)的左、右焦點分別為Fl vF,離心率,A為右頂點,K為右準線與x軸的交點,且.

(1) 求橢圓的標準方程

(2) 設橢圓的上頂點為B,問是否存在直線l,使直線l交橢圓于C,D兩點,且橢圓的左焦點F1恰為的垂心?若存在,求出l的方程;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案