關(guān)于函數(shù)y=tan(2x-
π
3
),下列說法正確的是( 。
A、是奇函數(shù)
B、最小正周期為π
C、(
π
6
,0)為圖象的一個對稱中心
D、其圖象由y=tan2x的圖象右移
π
3
單位得到
分析:利用正切函數(shù)的奇偶性、周期性、對稱性及函數(shù)圖象變換對A、B、C、D四個選項逐一判斷即可.
解答:解:令y=f(x)=tan(2x-
π
3
),
對于A,∵f(-x)=tan(-2x-
π
3
)≠-tan(2x-
π
3
)=-f(x),故它不是奇函數(shù),A錯誤;
對于B,f(x)=tan(2x-
π
3
)的最小正周期T=
π
2
,故B錯誤;
對于C,∵f(
π
6
)=0,故(
π
6
,0)為圖象的一個對稱中心,即C正確;
對于D,令g(x)=tan2x,
∵g(x-
π
3
)=tan2(x-
π
3
)=tan(2x-
3
)≠tan(2x-
π
3
),故D錯誤;
綜上所述,說法正確的是C.
故選:C.
點評:本題考查正切函數(shù)的圖象與性質(zhì),著重考查其奇偶性、周期性、對稱性及函數(shù)圖象變換,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個命題中:
①函數(shù)y=tan(x+
π
4
)
的定義域是{x|x≠
π
4
+kπ,k∈Z}

②已知sinα=
1
2
,且α∈[0,2π],則α的取值集合是{
π
6
}
;
③函數(shù)f(x)=sin2x+acos2x的圖象關(guān)于直線x=-
π
8
對稱,則a的值等于-1;
④函數(shù)y=cos2x+sinx的最小值為-1.
把你認(rèn)為正確的命題的序號都填在橫線上
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=-2與函數(shù)y=tan(ωx+
π
4
)圖象相鄰兩交點間的距離為
π
2
,將y=tan(ωx+
π
4
)圖象向右平移φ(φ>0)個單位后,其圖象關(guān)于原點對稱,則φ的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列結(jié)論中:
①函數(shù)y=sin(kπ-x)(k∈Z)為奇函數(shù);
②函數(shù)y=tan(2x+
π
6
)
的圖象關(guān)于點(
π
12
,0)
對稱;
③函數(shù)y=cos(2x+
π
3
)
的圖象的一條對稱軸為x=-
2
3
π;
④若tan(π-x)=2,則cos2x=
1
5

其中正確結(jié)論的序號為
①③④
①③④
(把所有正確結(jié)論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)y=tan(2x-
π
3
),下列說法正確的是(  )
A、是奇函數(shù)
B、在區(qū)間(0,
π
3
)上單調(diào)遞減
C、(
π
6
,0)為圖象的一個對稱中心
D、最小正周期為π

查看答案和解析>>

同步練習(xí)冊答案