分析 (1)利用兩角和差的正弦公式、二倍角公式化簡函數(shù)的解析式為f(x)=2sin(2x-$\frac{π}{3}$),可得函數(shù)h(x)=2sin(2x+2t-$\frac{π}{3}$),再由 h(-$\frac{π}{6}$)=0 可得2t-$\frac{2π}{3}$=0,由此解得t的值.
(2)由h(A)=2sin(2A+$\frac{π}{3}$)=1,可解得A,由A的度數(shù)得到B+C的度數(shù),用B表示出C,代入($\sqrt{3}$-1)sinB+$\sqrt{2}$sinC中,利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),由正弦函數(shù)的值域確定出范圍即可.
解答 解:(1)∵函數(shù)f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1=2•$\frac{1-cos(\frac{π}{2}+2x)}{2}$-$\sqrt{3}$cos2x-1=1+sin2x-$\sqrt{3}$cos2x-1=2($\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$sin2x)=2sin(2x-$\frac{π}{3}$ ),
∴函數(shù)h(x)=f(x+t)=2sin(2x+2t-$\frac{π}{3}$),且它的圖象關于點(-$\frac{π}{6}$,0)對稱,且t∈(0,$\frac{π}{2}$),即2t∈(0,π),
∴h(-$\frac{π}{6}$)=0,即 2sin(2t-$\frac{2π}{3}$)=0,
∴2t-$\frac{2π}{3}$=0,解得t=$\frac{π}{3}$.
(2)∵由已知可得:A∈(0,$\frac{π}{2}$),可得2A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),
又∵由(1)可得:h(x)=f(x+t)=2sin(2x+$\frac{π}{3}$),
∴h(A)=2sin(2A+$\frac{π}{3}$)=1,可解得:2A+$\frac{π}{3}$=$\frac{5π}{6}$,可得:A=$\frac{π}{4}$,C=$\frac{3π}{4}$-B,
∴($\sqrt{3}$-1)sinB+$\sqrt{2}$sinC=($\sqrt{3}$-1)sinB+$\sqrt{2}$sin($\frac{3π}{4}$-B)=($\sqrt{3}$-1)sinB+cosB+sinB=2sin(B+$\frac{π}{6}$),
∵0<B<$\frac{π}{2}$,∴$\frac{π}{6}$<B+$\frac{π}{6}$<$\frac{2π}{3}$,
∴$\frac{1}{2}$<sin(B+$\frac{π}{6}$)≤1,即1<2sin(B+$\frac{π}{6}$)≤2,
則sinB+sinC的范圍為(1,2].
點評 本題主要考查兩角和差的正弦公式、二倍角公式的應用,正弦函數(shù)的對稱性,考查了計算能力和轉化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com