己知數(shù)列{an}的前n項和滿足Sn=2n+1-1,則an=
3,n=1
2n,n≥2
3,n=1
2n,n≥2
分析:當n=1時,可求a1=S1=3,當n≥2時,an=Sn-Sn-1,驗證n=1時是否符合,符合則合并,否則分開寫.
解答:解:∵Sn=2n+1-1,
當n=1時,a1=S1=3,
當n≥2時,an=Sn-Sn-1=(2n+1-1)-(2n-1)=2n,
顯然,n=1時a1=3≠2,不符合n≥2的關系式.
∴an=
3,n=1
2n,n≥2

故答案為:
3,n=1
2n,n≥2
點評:本題考查數(shù)列的前n項和的應用,考查等比關系的確定及其通項公式的求法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

己知數(shù)列{an}的前n項和為Sn=n2+
12
n

(I)求a1,及數(shù)列{an}的通項公式;
( II)數(shù)列{an}是等差數(shù)列嗎?如果是,求它的公差是多少;如果不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知數(shù)列{an}的前n項和為Sn,a1=2,當n≥2時,Sn-1+1,an,Sn+1成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設bn=log3
an+1
2
,Tn是數(shù)列{
1
bnbn+1
}
的前n項和,求使得Tn
m
20
對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知數(shù)列{an}的前n項和為Sn,a1=2,當n≥2時,Sn-1+1,an,Sn+1成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設bn=
3n
SnSn+1
,Tn是數(shù)列{bn}的前n項和,求使得Tn
m
20
對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•溫州二模)己知數(shù)列{an}的前n項和為Sn,a1=2.當n≥2時.Sn-1+l,an.Sn+1成等差數(shù)列.
(I)求證:{Sn+1}是等比數(shù)列:
(II)求數(shù)列{nan}的前n項和.

查看答案和解析>>

同步練習冊答案