13.已知△ABC的三角為A,B,C對(duì)應(yīng)的邊為A,B,C滿足2acosC=2b+c,
(1)求A
(2)若a=2$\sqrt{3}$,b+c=4,求S△ABC

分析 (1)利用正弦定理化簡(jiǎn)已知等式,再利用誘導(dǎo)公式及兩角和與差的正弦函數(shù)公式得到關(guān)系式,聯(lián)立后根據(jù)sinC不為0求出cosA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);
(2)利用余弦定理列出關(guān)系式,將a,b+c及cosA的值代入求出bc的值,由sinA與bc的值,利用三角形的面積公式求出即可.

解答 解:(1)∵2acosC=2b+c,由正弦定理可知2sinAcosC=2sinB+sinC,①
三角形中有:sinB=sin(A+C)=sinAcosC+cosAsinC,②
聯(lián)立①②可化簡(jiǎn)得:2cosAsinC+sinC=0,
在三角形中sinC≠0,得cosA=-$\frac{1}{2}$,
又0<A<π,
∴A=$\frac{2π}{3}$;
(2)由余弦定理a2=b2+c2-2bc•cosA,得(2$\sqrt{3}$)2=(b+c)2-2bc-2bccos$\frac{2π}{3}$,即12=16-2bc+bc,
解得:bc=4,
則S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.

點(diǎn)評(píng) 此題考查了正弦定理,余弦定理,三角形的面積公式,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.一奶制品加工廠以牛奶為原料分別在甲、乙兩類設(shè)備上加工生產(chǎn)A、B兩種奶制品,如用甲類設(shè)備加工一桶牛奶,需耗電12千瓦時(shí),可得3千克A制品;如用乙類設(shè)備加工一桶牛奶,需耗電8千瓦時(shí),可得4千克B制品.根據(jù)市場(chǎng)需求,生產(chǎn)的A、B兩種奶制品能全部售出,每千克A獲利a元,每千克B獲利b元.現(xiàn)在加工廠每天最多能得到50桶牛奶,每天兩類設(shè)備工作耗電的總和不得超過(guò)480千瓦時(shí),并且甲類設(shè)備每天至多能加工102千克A制品,乙類設(shè)備的加工能力沒(méi)有限制.其生產(chǎn)方案是:每天用x桶牛奶生產(chǎn)A制品,用y桶牛奶生產(chǎn)B制品(為了使問(wèn)題研究簡(jiǎn)化,x,y可以不為整數(shù)).
(Ⅰ)若a=24,b=16,試為工廠制定一個(gè)最佳生產(chǎn)方案(記此最佳生產(chǎn)方案為F0),即x,y分別為何值時(shí),使工廠每天的獲利最大,并求出該最大值;
(Ⅱ) 隨著季節(jié)的變換和市場(chǎng)的變化,以及對(duì)原配方的改進(jìn),市場(chǎng)價(jià)格也發(fā)生變化,獲利也隨市場(chǎng)波動(dòng).若a=24(1+4λ),b=16(1+5λ-5λ2)(這里0<λ<1),其它條件不變,試求λ的取值范圍,使工廠當(dāng)且僅當(dāng)采。á瘢┲械纳a(chǎn)方案F0時(shí)當(dāng)天獲利才能最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列各命題是真命題的是( 。
A.如果a>b,那么$\frac{a}{c}$>$\frac{c}$B.如果ac<bc,那么a<b
C.如果a>b,c>d,那么a-c>b-dD.如果a>b,那么a-c>b-c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知等差數(shù)列{an}的前n項(xiàng)和 Sn,且a4=11,S8=100;數(shù)列{bn}滿足${b_1}=\frac{1}{2}{a_1}$,anbn+1+bn+1=nbn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點(diǎn)為F,圓M的圓心在x軸的正半軸上,圓M與y軸相切,過(guò)原點(diǎn)O作傾斜角為$\frac{π}{3}$的直線m,交直線l于點(diǎn)A,交圓M于不同的兩點(diǎn)O、B,且|AO|=|BO|=2,若P為拋物線C上的動(dòng)點(diǎn),則$\overrightarrow{PM}•\overrightarrow{PF}$的最小值為( 。
A.-2B.2C.$\frac{7}{4}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知正實(shí)數(shù)a,b滿足a+b=3,則$\frac{1}{1+a}+\frac{4}{4+b}$的最小值為(  )
A.1B.$\frac{7}{8}$C.$\frac{9}{8}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知數(shù)列{an}的通項(xiàng)公式an=n2-2n-8(n∈N*),則a4等于(  )
A.1B.2C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.底面半徑為4,高為$8\sqrt{2}$的圓錐有一個(gè)內(nèi)接的正四棱柱(底面是正方形,側(cè)棱與底面垂直的四棱柱).
(1)設(shè)正四棱柱的底面邊長(zhǎng)為x,試將棱柱的高h(yuǎn)表示成x的函數(shù);
(2)當(dāng)x取何值時(shí),此正四棱柱的表面積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-2y-2≥0\\ 2x+y-4≥0\\ x-y-3≤0\end{array}\right.$則x2+(y+2)2的取值范圍是( 。
A.[$\frac{65}{9}$,25]B.[$\frac{36}{5}$,25]C.[16,25]D.[9,25]

查看答案和解析>>

同步練習(xí)冊(cè)答案