【題目】設函數(shù) ,記Ik=|fk(a2)﹣fk(a1)|+|fk(a3)﹣fk(a2)|++|fk(a2016)﹣fk(a2015)|,k=1,2,則( )
A.I1<I2
B.I1>I2
C.I1=I2
D.I1 , I2大小關系不確定
【答案】A
【解析】解:∵f1(ai+1)﹣f1(ai)= ﹣ = .
∴I1=|f1(a2)﹣f1(a1)|+|f1(a3)﹣f1(a2)|++|f1(a2015)﹣f1(a2014)|
=| ﹣ |×2015= .
∵f2(ai+1)﹣f2(ai)=log2016 ﹣log2016 =log2016 .
∴I2=|f2(a2)﹣f2(a1)|+|f2(a3)﹣f2(a2)|++|f2(a2015)﹣f2(a2014)|
=log2016( × ×× )=log20162016=1,
∴I1<I2.
故選:A.
【考點精析】通過靈活運用函數(shù)的值,掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調性法即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設向量 , ,x∈R,記函數(shù) .
(1)求函數(shù)f(x)的單調遞增區(qū)間;
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c.若 , ,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型民企為激勵創(chuàng)新,計劃逐年加大研發(fā)資金投入.若該民企2016年全年投入研發(fā)資金130萬元,在此基礎上,每年投入的研發(fā)資金比上一年增長12%,則該民企全年投入的研發(fā)資金開始超過200萬元的年份是(參考數(shù)據(jù):lg1.12=0.05,lg1.3=0.11,lg2=0.30)( )
A.2017年
B.2018年
C.2019年
D.2020年
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 的圖象上有且僅有四個不同的點關于直線y=﹣1的對稱點在y=kx﹣1的圖象上,則實數(shù)k的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ2﹣4ρsinθ+2=0.
(Ⅰ)把圓C的極坐標方程化為直角坐標方程;
(Ⅱ)將直線l向右平移h個單位,所得直線l′與圓C相切,求h.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖多面體ABCD中,面ABCD為正方形,棱長AB=2,AE=3,DE= ,二面角E﹣AD﹣C的余弦值為 ,且EF∥BD.
(1)證明:面ABCD⊥面EDC;
(2)若直線AF與平面ABCD所成角的正弦值為 ,求二面角AF﹣E﹣DC的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,平面PAB⊥平面ABC,△PAB是等邊三角形,AC⊥BC,且AC=BC=2,O、D分別是AB,PB的中點.
(1)求證:PA∥平面COD;
(2)求三棱錐P﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)滿足2x2f(x)+x3f'(x)=ex , f(2)= ,則x∈[2,+∞)時,f(x)的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com