年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044
已知函數(shù)f(x)=x(x-a)(x-b),其中0<a<b.
(1)設(shè)f(x)在x=s及x=t處取到極值,其中s<t,求證:0<s<a<t<b.
(2)設(shè)A(s,f(s)),B(t,f(t)),求證:線段AB的中點(diǎn)C在曲線y=f(x)上.
(3)若a+b<2,求證:過原點(diǎn)且與曲線y=f(x)相切的兩條直線不可能垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:宜都一中2008屆高三數(shù)學(xué)周練(5) 題型:044
已知f(x)=x(x-a)(x-b),點(diǎn)A(s,f(s)),B(t,f(t)).
(1)若a=b=1,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)的導(dǎo)函數(shù)滿足:當(dāng)|x|≤1時(shí),有恒成立,求函數(shù)f(x)的解析表達(dá)式;
(3)若0<a<b,函數(shù)f(x)在x=s和x=t處取得極值,且a+b=,證明:與不可能垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省固始高中2011屆高三第一次月考文科數(shù)學(xué)試題 題型:044
選修4-5:不等式證明選講
已知函數(shù)f(x)=|x+2|-|x-1|.
(1)試求f(x)的值域;
(2)設(shè)g(x)=(a>0)若對(duì)s∈(0,+∞),t∈(-∞,+∞),恒有g(shù)(s)≥f(t)成立,試求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省鎮(zhèn)海中學(xué)2012屆高三5月模擬考試數(shù)學(xué)文科試題 題型:044
已知函數(shù)f(x)=·,其中=(2cosx,sinx),=(cosx,-2cosx)
(1)求函數(shù)f(x)在區(qū)間上的單調(diào)遞增區(qū)間和值域;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,f(a)=-1,且b=1△ABC的面積S=,求邊a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省廣州市2012屆高三第一次模擬考試數(shù)學(xué)文科試題 題型:044
已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若對(duì)任意a∈[3,4],函數(shù)f(x)在R上都有三個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.
已知橢圓x2+=1的左、右兩個(gè)頂點(diǎn)分別為A、B.曲線C是以A、B兩點(diǎn)為頂點(diǎn),離心率為的雙曲線,設(shè)點(diǎn)P在第一象限且在曲線C上,直線AP與橢圓相交于另一點(diǎn)T.
(1)求曲線C的方程;
(2)設(shè)點(diǎn)P、T的橫坐標(biāo)分別為x1,x2,證明:x1·x2=1;
(3)設(shè)△TAB與△POB(其中O為坐標(biāo)原點(diǎn))的面積分別為S1與S2,且,求S-S的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com