14.在銳角△ABC中,角A、B所對的邊長分別為a、b,若2asinB=$\sqrt{3}$b,則角A等于60°.

分析 已知等式利用正弦定理化簡,根據(jù)sinB不為0求出sinA的值,再由A為銳角,利用特殊角的三角函數(shù)值即可求出A的度數(shù).

解答 解:利用正弦定理化簡已知等式得:2sinAsinB=$\sqrt{3}$sinB,
∵sinB≠0,
∴sinA=$\frac{\sqrt{3}}{2}$,
∵A為銳角,
∴A=60°.
故答案為:60°.

點評 此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.從長度分別位2、4、6、8、10的五條線段中,任取3條,則所得的3條線段中能組成三角形的概率為(  )
A.$\frac{1}{2}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.以下命題中,正確命題的序號是①③.
①△ABC中,A>B的充要條件是sinA>sinB;
②函數(shù)y=f(x)在區(qū)間(1,2)上存在零點的充要條件是f(1)•f(2)<0;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(2,$\frac{\sqrt{2}}{2}$),則f(4)的值等于$\frac{1}{2}$;
④把函數(shù)y=sin(2-2x)的圖象向右平移2個單位后,得到的圖象對應的解析式為y=sin(4-2x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.$\root{4}{a-2}$+(a-4)0有意義,則a的取值范圍是( 。
A.a≥2B.2≤a<4或a>4C.a≠2D.a≠4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知等差數(shù)列{an}的前n項和為Sn,a2=-2,S4=-4,若Sn取得最小值,則n的值為( 。
A.n=2B.n=3C.n=2或n=3D.n=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若函數(shù)f(x)=$\left\{\begin{array}{l}{1-{2}^{x},x≤0}\\{{x}^{3}-3x+a,x>0}\end{array}\right.$的值域為[0,+∞),則實數(shù)a的取值范圍是( 。
A.2≤a≤3B.a>2C.a≥2D.2≤a<3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若z=$\frac{1}{1-i}$-i,則|z|=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{1}{2}$+$\frac{1}{2}i$D.$\frac{1}{2}$+$\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}m{x^2}$+x在R上有極值,則m的取值范圍是{m|m>2或m<-2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.(理)“十一黃金周”期間三亞景區(qū)迎來了游客高峰期.游客小李從“大小洞天”到景區(qū)“天涯海角”景區(qū)有L1,L2兩條路線(如圖),路線L1上有A1,A2,A3三個風景點,各風景點遇到堵塞的概率均為$\frac{2}{3}$;L2路線上有B1,B2兩個風景點,各風景點遇到堵塞的概率依次為$\frac{3}{4}$,$\frac{3}{5}$.
(1)若走L1路線,求最多遇到1次堵塞的概率;
(2)按照“平均遇到堵塞次數(shù)最少”的要求,請你幫助小李從上述兩條路線中選擇一條最好的旅游路線,并說明理由.

查看答案和解析>>

同步練習冊答案