數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意n∈N*,總有an,Sn,成等差數(shù)列.

(Ⅰ)求數(shù)列{an}的通項公式;

(Ⅱ)設(shè)數(shù)列{bn}的前n項和為Tn,且,求證:對任意實數(shù)x∈(1,e](e是常數(shù),e=2.71828…)和任意正整數(shù)n,總有Tn<2;

(Ⅲ)已知正數(shù)數(shù)列{cn}中,,求數(shù)列{cn}中的最大項.

答案:
解析:

  (Ⅰ)解:由已知:對于,總有①成立,

  ∴(n≥2)  ②,

 、伲诘茫,∴

  ∵均為正數(shù),∴(n≥2),∴數(shù)列是公差為1的等差數(shù)列.

  又n=1時,,解得=1,

  ∴.()  (4分)

  (Ⅱ)證明:∵對任意實數(shù)和任意正整數(shù)n,總有

  ∴

  故  (8分)

  (Ⅲ)解:由已知,

  

  易得

  猜想n≥2時,是遞減數(shù)列.

  令,

  ∵當(dāng)

  ∴在內(nèi)為單調(diào)遞減函數(shù).

  由.∴n≥2時,是遞減數(shù)列.,即是遞減數(shù)列.

  又,∴數(shù)列中的最大項為:  (14分)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意n∈N*,總有2Sn=an2+an
(1)求數(shù)列{an}的通項公式;
(2)設(shè)正數(shù)數(shù)列{cn}滿足an+1=(cnn+1,(n∈N*),求數(shù)列{cn}中的最大項;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的各項均為正數(shù),它的前n項和為Sn(n∈N*),已知點(an,4Sn)在函數(shù)f (x)=x2+2x+1的圖象上.
(1)證明{an}是等差數(shù)列,并求an;
(2)設(shè)m、k、p∈N*,m+p=2k,求證:
1
Sm
+
1
Sp
2
Sk
;
(3)對于(2)中的命題,對一般的各項均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請證明你的結(jié)論,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意n∈N*,總有an、Sn、(an2成等差數(shù)列.
(I)求數(shù)列{an}的通項公式;
(II)設(shè)bn=an(
1
2
)n
,數(shù)列{bn}的前n項和是Tn,求證:
1
2
Tn<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項和為Sn,則下列命題:
(1)若數(shù)列{an}是遞增數(shù)列,則數(shù)列{Sn}也是遞增數(shù)列;
(2)數(shù)列{Sn}是遞增數(shù)列的充要條件是數(shù)列{an}的各項均為正數(shù);
(3)若{an}是等差數(shù)列(公差d≠0),則S1•S2…Sk=0的充要條件是a1•a2…ak=0.
(4)若{an}是等比數(shù)列,則S1•S2…Sk=0(k≥2,k∈N)的充要條件是an+an+1=0.
其中,正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•奉賢區(qū)二模)數(shù)列{an} 的各項均為正數(shù),a1=p,p>0,k∈N*,an+an+k=f(p,k)•pn
(1)當(dāng)k=1,f(p,k)=p+k,p=5時,求a2,a3
(2)若數(shù)列{an}成等比數(shù)列,請寫出f(p,k)滿足的一個條件,并寫出相應(yīng)的通項公式(不必證明);
(3)當(dāng)k=1,f(p,k)=p+k時,設(shè)Tn=a1+2a2+3a3+…+2an+an+1,求Tn

查看答案和解析>>

同步練習(xí)冊答案