15.已知約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≤0}\\{y≥0}\\{x+ay-1≥0}\end{array}\right.$表示的平面區(qū)域是一個(gè)三角形,則a的取值范圍是(0,1).

分析 由約束條件前三個(gè)不等式作出圖形,結(jié)合直線(xiàn)x+ay-1=0過(guò)定點(diǎn)(1,0),可得約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≤0}\\{y≥0}\\{x+ay-1≥0}\end{array}\right.$表示的平面區(qū)域是一個(gè)三角形時(shí)直線(xiàn)的傾斜角的范圍,進(jìn)一步得到a的取值范圍.

解答 解:由約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≤0}\\{y≥0}\\{x+ay-1≥0}\end{array}\right.$作出可行域如圖,

由圖可知,直線(xiàn)x+ay-1=0過(guò)定點(diǎn)A(1,0),
當(dāng)直線(xiàn)x+ay-1=0的傾斜角為(90°,135°)時(shí),
約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≤0}\\{y≥0}\\{x+ay-1≥0}\end{array}\right.$表示的平面區(qū)域是一個(gè)三角形,
此時(shí)直線(xiàn)的斜率小于-1,a的范圍為(0,1).
故答案為:(0,1).

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線(xiàn)性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法及數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合 A={x|x2-x-2>0},B={x|1≤x≤3},則 A∩B=( 。
A.[1,3]B.(1,3]C.[2,3]D.(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),以線(xiàn)段F1F2為直徑的圓與雙曲線(xiàn)在第二象限的交點(diǎn)為P,若直線(xiàn)PF2與圓E:(x-$\frac{c}{2}$)2+y2=$\frac{^{2}}{16}$相切,則雙曲線(xiàn)的漸近線(xiàn)方程是( 。
A.y=±xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.水是地球上寶貴的資源,由于價(jià)格比較便宜在很多不缺水的城市居民經(jīng)常無(wú)節(jié)制的使用水資源造成嚴(yán)重的資源浪費(fèi).某市政府為了提倡低碳環(huán)保的生活理念鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[1,1.5),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬(wàn),試估計(jì)全市有多少居民?并說(shuō)明理由;
(2)若該市政府?dāng)M采取分層抽樣的方法在用水量噸數(shù)為[1,1.5)和[1.5,2)之間選取7戶(hù)居民作為議價(jià)水費(fèi)價(jià)格聽(tīng)證會(huì)的代表,并決定會(huì)后從這7戶(hù)家庭中按抽簽方式選出4戶(hù)頒發(fā)“低碳環(huán)保家庭”獎(jiǎng),設(shè)X為用水量噸數(shù)在[1,1.5)中的獲獎(jiǎng)的家庭數(shù),Y為用水量噸數(shù)在[1.5,2)中的獲獎(jiǎng)家庭數(shù),記隨機(jī)變量Z=|X-Y|,求Z的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在平面直角坐標(biāo)系xoy中,直線(xiàn)l:y=2x-4,圓C的半徑為1,圓心在直線(xiàn)l上,若圓C上存在點(diǎn)M,且M在圓D:x2+(y+1)2=4上,則圓心C的橫坐標(biāo)a的取值范圍是( 。
A.$[{\frac{3}{5},2}]$B.$[{0,\frac{12}{5}}]$C.$[{2-\frac{2}{5}\sqrt{5},2+\frac{2}{5}\sqrt{5}}]$D.$[{0,2-\frac{2}{5}\sqrt{5}}]∪[{2+\frac{2}{5}\sqrt{5},4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知$f(x)=\left\{\begin{array}{l}(3-a)x-a,x<1\\{log_a}x,x≥1\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A.(1,+∞)B.(1,3)C.(0,1)∪(1,3)D.$[\frac{3}{2},3)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知命題p:函數(shù)f(x)=x2-2ax+3在區(qū)間[-1,2]單調(diào)遞增,命題q:函數(shù)g(x)=lg(x2+ax+4)定義域?yàn)镽,若命題“p且q”為假,“p或q”為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{5\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.文淵閣本四庫(kù)全書(shū)《張丘建算經(jīng)》卷上(二十三):今有女子不善織,日減功,遲.初日織五尺,末日織一尺,今三十日織訖.問(wèn)織幾何?意思是:有一女子不善織布,逐日所織布按等差數(shù)列遞減,已知第一天織5尺,最后一天織1尺,共織了30天.問(wèn)共織布90尺.

查看答案和解析>>

同步練習(xí)冊(cè)答案