若n∈N*(an、bn∈Z).
(1)求a5+b5的值;
(2)求證:數(shù)列{bn}各項均為奇數(shù).
【答案】分析:(1)令n=5,利用二項式定理展開,然后化簡整理可求出a5與b5的值,從而求出所求;
(2)利用數(shù)學(xué)歸納法證明,先奠基,然后假設(shè)假設(shè)當(dāng)n=k時,然后證明當(dāng)n=k+1時也成立即可.
解答:解:(1)當(dāng)n=5時,
=[]+[]
=41+
故a5=29,b5=41所以a5+b5=70
(2)證明:由數(shù)學(xué)歸納法
(i)當(dāng)n=1時,易知b1=1,為奇數(shù);
(ii)假設(shè)當(dāng)n=k時,,其中bk為奇數(shù);
則當(dāng)n=k+1時,
=
∴bk+1=bk+2ak,又ak、bk∈Z,所以2ak是偶數(shù),
由歸納假設(shè)知bk是奇數(shù),故bk+1也是奇數(shù)
綜(i)(ii)可知數(shù)列{bn}各項均為奇數(shù).
點評:本題主要考查了二項式定理的應(yīng)用,以及利用數(shù)學(xué)歸納法證明有關(guān)問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N).對自然數(shù)k,規(guī)定{△kan}為{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知數(shù)列{an}的通項公式an=n2+n(n∈N),,試判斷{△an},{△2an}是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列{an}首項a1=1,且滿足△2an-△an+1+an=-2n(n∈N),求數(shù)列{an}的通項公式.
(3)(理)對(2)中數(shù)列{an},是否存在等差數(shù)列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an對一切自然n∈N都成立?若存在,求數(shù)列{bn}的通項公式;若不存在,則請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一系列函數(shù),如果它們解析式相同,值域相同,但定義域不同,則稱這一系列函數(shù)為“同族函數(shù)”.那么函數(shù)的解析式為y=x2,值域為{1,2}的同族函數(shù)有
9
9
個;若n∈N*,集合An={1,2,…,n}是解析式為y=x2的函數(shù)的值域,設(shè)an表示該函數(shù)的同族函數(shù)的個數(shù),則a1+a2+…+an=
3(3n-1)
2
3(3n-1)
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

有一系列函數(shù),如果它們解析式相同,值域相同,但定義域不同,則稱這一系列函數(shù)為“同族函數(shù)”.那么函數(shù)的解析式為y=x2,值域為{1,2}的同族函數(shù)有________個;若n∈N*,集合An={1,2,…,n}是解析式為y=x2的函數(shù)的值域,設(shè)an表示該函數(shù)的同族函數(shù)的個數(shù),則a1+a2+…+an=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有一系列函數(shù),如果它們解析式相同,值域相同,但定義域不同,則稱這一系列函數(shù)為“同族函數(shù)”.那么函數(shù)的解析式為y=x2,值域為{1,2}的同族函數(shù)有______個;若n∈N*,集合An={1,2,…,n}是解析式為y=x2的函數(shù)的值域,設(shè)an表示該函數(shù)的同族函數(shù)的個數(shù),則a1+a2+…+an=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年北京大學(xué)附中高三(上)入學(xué)摸底數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

有一系列函數(shù),如果它們解析式相同,值域相同,但定義域不同,則稱這一系列函數(shù)為“同族函數(shù)”.那么函數(shù)的解析式為y=x2,值域為{1,2}的同族函數(shù)有    個;若n∈N*,集合An={1,2,…,n}是解析式為y=x2的函數(shù)的值域,設(shè)an表示該函數(shù)的同族函數(shù)的個數(shù),則a1+a2+…+an=   

查看答案和解析>>

同步練習(xí)冊答案