已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處取得極值4,且|a|<|b|.
(1)求a、b的值,并確定f(1)是函數(shù)的極大值還是極小值;
(2)若對于任意x∈[0,2]的時,都有x3+ax2+bx>c2+6c成立,求c的取值范圍.
分析:(1)先對函數(shù)進(jìn)行求導(dǎo),然后根據(jù)f(1)=4,f'(1)=0求出a,b的值,然后根據(jù)函數(shù)的單調(diào)性判斷f(1)是極小值.
(2)先將(1)中結(jié)果代入,然后將問題轉(zhuǎn)化為求函數(shù)g(x)=x3+3x2-9x在[0,2]上的最小值的問題,進(jìn)而可解.
解答:解:(1)∵f(x)=x
3+ax
2+bx+a
2∴f'(x)=3x
2+2ax+b
由題意可知:f(1)=1+a+b+a
2=4,f'(1)=3+2a+b=0
解得:
或
∵|a|<|b|∴
當(dāng)a=3,b=-9時,f'(x)=3x
2+6x-9=3(x+3)(x-1)
當(dāng)x>1或x<-3時f'(x)>0,函數(shù)f(x)單調(diào)遞增
當(dāng)-3<x<1時f'(x)<0,函數(shù)f(x)單調(diào)遞減
∴f(1)是函數(shù)的極小值
(2)由題意可知,x
3+3x
2-9x>c
2+6c對于任意x∈[0,2]恒成立
令g(x)=x
3+3x
2-9x,則g'(x)=3x
2+6x-9=3(x+3)(x-1)
∴當(dāng)x>1或x<-3時g'(x)>0,函數(shù)g(x)單調(diào)遞增
當(dāng)-3<x<1時g'(x)<0,函數(shù)g(x)單調(diào)遞減
∴x=1時函數(shù)g(x)取到最小值g(1)=-5
∴只要-5>c
2+6c即可
-5<c<-1
點(diǎn)評:本題主要考查函數(shù)的極值與其導(dǎo)函數(shù)之間的關(guān)系以及函數(shù)在閉區(qū)間上最值的求法.導(dǎo)數(shù)時高考的熱點(diǎn)問題,每年必考要給予充分的重視.