【題目】福彩是利國利民游戲,其刮刮樂之《藍色奇跡》:如圖(1)示例,刮開票面看到最左側(cè)一列四個兩位數(shù)字為“我的號碼”,最上行四個兩位數(shù)為“中獎號碼”,這八個兩位數(shù)是00至99這一百個數(shù)字隨機產(chǎn)生的,若兩個數(shù)字相同即中得其相交線上的獎金,獎金可以累加.小明買的一張《藍色奇跡》刮刮樂如圖(2),除了一個“我的號碼”外,他已經(jīng)刮開票面上其它所有數(shù)字,依據(jù)目前的信息,小明從這張刮刮樂得到的獎金額高于600元的概率為(無所得稅)( )
圖(1) 圖(2)
A.B.C.D.
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐P—ABC中,PB平面ABC,ABBC,AB=PB=2,BC=2,E、G分別為PC、PA的中點.
(1)求證:平面BCG平面PAC;
(2)假設(shè)在線段AC上存在一點N,使PNBE,求的值;
(3)在(2)的條件下,求直線與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,為橢圓的右焦點,為橢圓上一點,的離心率
(1)求橢圓的標準方程;
(2)斜率為的直線過點交橢圓于兩點,線段的中垂線交軸于點,試探究是否為定值,如果是,請求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班有甲乙兩個物理科代表,從若干次物理考試中,隨機抽取八次成績的莖葉圖(其中莖為成績十位數(shù)字,葉為成績的個位數(shù)字)如下:
(1)分別求甲、乙兩個科代表成績的中位數(shù);
(2)分別求甲、乙兩個科代表成績的平均數(shù),并說明哪個科代表的成績更穩(wěn)定;
(3)將頻率視為概率,對乙科代表今后三次考試的成績進行預(yù)測,記這三次成績中不低于90分的次數(shù)為,求的分布列及均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校健康社團為調(diào)查本校大學生每周運動的時長,隨機選取了80名學生,調(diào)查他們每周運動的總時長(單位:小時),按照共6組進行統(tǒng)計,得到男生、女生每周運動的時長的統(tǒng)計如下(表1、2),規(guī)定每周運動15小時以上(含15小時)的稱為“運動合格者”,其中每周運動25小時以上(含25小時)的稱為“運動達人”.
表1:男生
時長 | ||||||
人數(shù) | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
時長 | ||||||
人數(shù) | 0 | 4 | 12 | 12 | 8 | 4 |
(1)從每周運動時長不小于20小時的男生中隨機選取2人,求選到“運動達人”的概率;
(2)根據(jù)題目條件,完成下面列聯(lián)表,并判斷能否有99%的把握認為本校大學生是否為“運動合格者”與性別有關(guān).
每周運動的時長小于15小時 | 每周運動的時長不小于15小時 | 總計 | |
男生 | |||
女生 | |||
總計 | |||
參考公式:,其中.
參考數(shù)據(jù):
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】冬季歷來是交通事故多發(fā)期,面臨著貨運高危運行、惡劣天氣頻發(fā)、包車客運監(jiān)管漏洞和農(nóng)村交通繁忙等四個方面的挑戰(zhàn).全國公安交管部門要認清形勢、正視問題,針對近期事故暴露出來的問題,強薄羽、補短板、堵漏洞,進一步推動五大行動,鞏固擴大五大行動成果,全力確保冬季交通安全形勢穩(wěn)定.據(jù)此,某網(wǎng)站推出了關(guān)于交通道路安全情況的調(diào)查,通過調(diào)查年齡在的人群,數(shù)據(jù)表明,交通道路安全仍是百姓最為關(guān)心的熱點,參與調(diào)查者中關(guān)注此類問題的約占80%.現(xiàn)從參與調(diào)查并關(guān)注交通道路安全的人群中隨機選出100人,并將這100人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)求這100人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)(精確到小數(shù)點后一位);
(2)現(xiàn)在要從年齡較大的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機抽取2人進行問卷調(diào)查,求第2組恰好抽到1人的概率;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,平面,,,且,,,分別為棱,,,的中點.
(I)證明:直線與共面;
(Ⅱ)證明:平面平面;并試寫出到平面的距離(不必寫出計算過程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義域是上的連續(xù)函數(shù)圖像的兩個端點為、,是圖像上任意一點,過點作垂直于軸的直線交線段于點(點與點可以重合),我們稱的最大值為該函數(shù)的“曲徑”,下列定義域是上的函數(shù)中,曲徑最小的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,已知AB⊥AC,AB=2,AC=4,AA1=3,D是BC的中點.
(1) 求直線DC1與平面A1B1D所成角的正弦值;
(2) 求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com