【題目】已知函數(shù)f(x)=2|x+1|+|2x﹣a|(x∈R).
(1)當(dāng)a>﹣2時,函數(shù)f(x)的最小值為4,求實數(shù)a的值;
(2)若對于任意,x∈[﹣1,4],不等式f(x)≥3x恒成立,求實數(shù)a的取值范圍.

【答案】
(1)解:將函數(shù)分段為: ,

∴當(dāng)且僅當(dāng) 時,f(x)min=a+2,

由題意得a+2=4,即a=2


(2)解:當(dāng)x∈[﹣1,4]時f(x)≥3x恒成立|2x﹣a|≥x﹣2恒成立,

若﹣1≤x<2,不等式恒成立,此時a∈R;

若2≤x≤4,|2x﹣a|≥x﹣22x﹣a≥x﹣2或2x﹣a≤(x﹣2),

即a≤x+2或a≥3x﹣2在x∈[2,4]恒成立,所以a≤4或a≥10,

綜上知,所求實數(shù)a的取值范圍是(﹣∞,4]∪[10,+∞)


【解析】(1)求出函數(shù)的分段函數(shù)的形式,求出f(x)的最小值,得到關(guān)于a的方程,解出即可;(2)問題等價于|2x﹣a|≥x﹣2恒成立,通過討論x的范圍,求出a的范圍即可.
【考點精析】認真審題,首先需要了解絕對值不等式的解法(含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來大氣污染防治工作得到各級部門的重視,某企業(yè)在現(xiàn)有設(shè)備下每日生產(chǎn)總成本(單位:萬元)與日產(chǎn)量(單位:噸)之間的函數(shù)關(guān)系式為,現(xiàn)為了配合環(huán)境衛(wèi)生綜合整治,該企業(yè)引進了除塵設(shè)備,每噸產(chǎn)品除塵費用為萬元,除塵后當(dāng)日產(chǎn)量時,總成本

1)求的值;

2)若每噸產(chǎn)品出廠價為48萬元,試求除塵后日產(chǎn)量為多少時,每噸產(chǎn)品的利潤最大,最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接夏季旅游旺季的到來,少林寺單獨設(shè)置了一個專門安排游客住宿的客棧,寺廟的工作人員發(fā)現(xiàn)為游客準(zhǔn)備的一些食物有些月份剩余不少,浪費很嚴(yán)重,為了控制經(jīng)營成本,減少浪費,就想適時調(diào)整投入.為此他們統(tǒng)計每個月入住的游客人數(shù),發(fā)現(xiàn)每年各個月份來客棧入住的游客人數(shù)會發(fā)生周期性的變化,并且有以下規(guī)律:

①每年相同的月份,入住客棧的游客人數(shù)基本相同;

②入住客棧的游客人數(shù)在2月份最少,在8月份最多,相差約400人;

③2月份入住客棧的游客約為100人,隨后逐月遞增直到8月份達到最多.

(1)試用一個正弦型三角函數(shù)描述一年中入住客棧的游客人數(shù)y與月x份之間的關(guān)系;

(2)請問哪幾個月份要準(zhǔn)備400份以上的食物?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)的左、右焦點分別為F1、F2 , A為橢圓E的右頂點,B,C分別為橢圓E的上、下頂點.線段CF2的延長線與線段AB交于點M,與橢圓E交于點P.
(1)若橢圓的離心率為 ,△PF1C的面積為12,求橢圓E的方程;
(2)設(shè)S =λS ,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,

已知圓和圓.

1)若直線過點,且被圓截得的弦長為

求直線的方程;(2)設(shè)P為平面上的點,滿足:

存在過點P的無窮多對互相垂直的直線,

它們分別與圓和圓相交,且直線被圓

截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點P的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)+ 的圖象過(1,2),若f(x)相鄰的零點為x1 , x2且滿足|x1﹣x2|=6,則f(x)的單調(diào)增區(qū)間為(
A.[﹣2+12k,4+12k](k∈Z)
B.[﹣5+12k,1+12k](k∈Z)
C.[1+12k,7+12k](k∈Z)
D.[﹣2+6k,1+6k](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),對任意的,滿足,其中為常數(shù).

(1)若的圖象在處的切線經(jīng)過點,求的值;

(2)已知,求證

(3)當(dāng)存在三個不同的零點時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三點,,,曲線上任意一點滿足

(1)的方程;

(2)動點 在曲線上,是曲線處的切線.問:是否存在定點使得都相交,交點分別為,且的面積之比為常數(shù)?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣mx(m∈R). (Ⅰ)當(dāng)m=0時,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)b>a>0時,總有 >1成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案