若存在實(shí)數(shù)x∈[1,2]滿足2x2-ax+2>0,則實(shí)數(shù)a的取值范圍是
(-∞,5)
(-∞,5)
分析:構(gòu)造函數(shù)f(x)=2x2-ax+2,若存在實(shí)數(shù)x∈[1,2]滿足2x2-ax+2>0,則f(1)>0,或f(2)>0,進(jìn)而可得實(shí)數(shù)a的取值范圍
解答:解:令f(x)=2x2-ax+2
若存在實(shí)數(shù)x∈[1,2]滿足2x2-ax+2>0,
則f(1)>0,或f(2)>0
即4-a>0,或10-2a>0,
即a<4,或a<5
故a<5
即實(shí)數(shù)a的取值范圍是(-∞,5)
故答案為:(-∞,5)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是特稱命題,其中構(gòu)造函數(shù),將存在性問題(特稱命題),轉(zhuǎn)化為不等式問題是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若存在實(shí)數(shù)x∈[1,2]滿足2x>a-
2x
,則實(shí)數(shù)a的取值范圍是
(-∞,5)
(-∞,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實(shí)數(shù)x∈[1,2]滿足2x>a-x2,則實(shí)數(shù)a的取值范圍是
(-∞,8)
(-∞,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x•ex+ax2+bx在x=0和x=1時(shí)都取得極值.
(Ⅰ)求a和b的值;
(Ⅱ)若存在實(shí)數(shù)x∈[1,2],使不等式f(x)≤
12
x2+(t-1)x
成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年遼寧省五校協(xié)作體高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

定義在上的函數(shù)同時(shí)滿足以下條件:

(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);

是偶函數(shù);

x0處的切線與直線yx2垂直.

(1)求函數(shù)的解析式;

(2)設(shè)g(x),若存在實(shí)數(shù)x[1,e],使<,求實(shí)數(shù)m的取值范圍..

 

查看答案和解析>>

同步練習(xí)冊(cè)答案