如圖,過橢圓
x2
3
+y2=1的右焦點(diǎn)F2作直線l交橢圓B、C兩點(diǎn),則△F1BC的周長(zhǎng)是(  )
A、6
B、12
C、2
3
D、4
3
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)橢圓的定義,將三角形的周長(zhǎng)轉(zhuǎn)化為橢圓的定義即可得到結(jié)論.
解答: 解:由橢圓的方程可知a=
3
,
∵直線l經(jīng)過右焦點(diǎn)F2,
∴根據(jù)橢圓的定義可知|CF1|+|CF2|=2a,|BF1|+|BF2|=2a,
則|CF1|+|CF2|+|BF1|+|BF2|=4a=4
3

故△F1BC的周長(zhǎng)是4
3
,
故選:D
點(diǎn)評(píng):本題主要考查△的周長(zhǎng),利用橢圓的定義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-4x+3=0在點(diǎn)P(2,1)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,且a3=9,a5=3,則a9等于( 。
A、-9B、-6C、-3D、27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,a∈R,若(a-1)(a+1+i)=a2-1+(a-1)i是純虛數(shù),則a的值為( 。
A、-1或1B、1C、3D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足規(guī)律:a1>a2<a3>…<a2n-1>a2n<…,則稱數(shù)列{an}為余弦數(shù)列,現(xiàn)將1,2,3,4,5排列成一個(gè)余弦數(shù)列的排法種數(shù)為(  )
A、12B、14C、16D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列結(jié)論:
①在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;
②某工廠加工的某種鋼管,內(nèi)徑與規(guī)定的內(nèi)徑尺寸之差是離散型隨機(jī)變量;
③隨機(jī)變量的方差和標(biāo)準(zhǔn)差都反映了隨機(jī)變量的取值偏離均值的平均程度,它們?cè)叫,則隨機(jī)變量偏離均值的平均程度越;
④甲、乙兩人向同一目標(biāo)同時(shí)射擊一次,事件A:“甲、乙中至少一人擊中目標(biāo)”與事件B:“甲、乙都沒有擊中目標(biāo)”是相互獨(dú)立事件.
其中結(jié)論正確的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈R,平面向量
a
=(1,x-1),
b
=(x,2),若
a
b
,則x的值為( 。
A、2或-1
B、-2或1
C、2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中與圓ρ=4sin(θ+
π
4
)相切的一條直線的方程為(  )
A、ρsin(θ-
π
4
)=4
B、ρsinθ=4
C、ρcosθ=4
D、ρcos(θ-
π
4
)=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=i2(i是虛數(shù)單位)的虛部是( 。
A、iB、-1C、1D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案