【題目】某手機(jī)廠商在銷售200萬臺某型號手機(jī)時開展“手機(jī)碎屏險”活動、活動規(guī)則如下:用戶購買該型號手機(jī)時可選購“手機(jī)碎屏險”,保費為元,若在購機(jī)后一年內(nèi)發(fā)生碎屏可免費更換一次屏幕.該手機(jī)廠商將在這萬臺該型號手機(jī)全部銷售完畢一年后,在購買碎屏險且購機(jī)后一年內(nèi)未發(fā)生碎屏的用戶中隨機(jī)抽取名,每名用戶贈送元的紅包,為了合理確定保費的值,該手機(jī)廠商進(jìn)行了問卷調(diào)查,統(tǒng)計后得到下表(其中表示保費為元時愿意購買該“手機(jī)碎屏險”的用戶比例);

1)根據(jù)上面的數(shù)據(jù)求出關(guān)于的回歸直線方程;

2)通過大數(shù)據(jù)分析,在使用該型號手機(jī)的用戶中,購機(jī)后一年內(nèi)發(fā)生碎屏的比例為.已知更換一次該型號手機(jī)屏幕的費用為元,若該手機(jī)廠商要求在這次活動中因銷售該“手機(jī)碎屏險”產(chǎn)生的利潤不少于萬元,能否把保費定為5元?

x

10

20

30

40

50

y

0.79

0.59

0.38

0.23

0.01

參考公式:回歸方程中斜率和截距的最小二乘估計分別為,

參考數(shù)據(jù):表中5個值從左到右分別記為,相應(yīng)的值分別記為,經(jīng)計算有,其中,

【答案】(1);(2)能

【解析】

1由已知表格中的數(shù)據(jù)求得,進(jìn)而可得線性回歸方程;

2)求出保費定為5元時,該手機(jī)廠商在這次活動中,因銷售該“手機(jī)碎屏險”產(chǎn)生的利潤,與70萬元比較,即可得出結(jié)果.

解:(1)由已知得,

,

所以,,

關(guān)于的回歸直線方程為

2)能把保費定為5元.

理由如下:若保費定為5元,則估計

估計該手機(jī)廠商在這次活動中因銷售該“手機(jī)碎屏險”產(chǎn)生的利潤為

(萬元)(萬元).

把保費定為5元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中記載的芻甍chu meng)是指底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個芻甍,其中是正三角形,,則以下兩個結(jié)論:①;②,(

A.①和②都不成立B.①成立,但②不成立

C.①不成立,但②成立D.①和②都成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過千分之一,則其生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司2014-2018年的相關(guān)數(shù)據(jù)如下表所示:

年份

2014

2015

2016

2017

2018

年生產(chǎn)臺數(shù)(萬臺)

2

4

5

6

8

該產(chǎn)品的年利潤(百萬元)

30

40

60

50

70

年返修臺數(shù)(臺)

19

58

45

71

70

注:

(1)從該公司2014-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),求這3年中至少有2年生產(chǎn)部門考核優(yōu)秀的概率.

(2)利用上表中五年的數(shù)據(jù)求出年利潤(百萬元)關(guān)于年生產(chǎn)臺數(shù)(萬臺)的回歸直線方程是 ①.現(xiàn)該公司計劃從2019年開始轉(zhuǎn)型,并決定2019年只生產(chǎn)該產(chǎn)品1萬臺,且預(yù)計2019年可獲利32(百萬元);但生產(chǎn)部門發(fā)現(xiàn),若用預(yù)計的2019年的數(shù)據(jù)與2014-2018年中考核優(yōu)秀年份的數(shù)據(jù)重新建立回歸方程,只有當(dāng)重新估算的的值(精確到0.01),相對于①中的值的誤差的絕對值都不超過時,2019年該產(chǎn)品返修率才可低于千分之一.若生產(chǎn)部門希望2019年考核優(yōu)秀,能否同意2019年只生產(chǎn)該產(chǎn)品1萬臺?請說明理由.

(參考公式:, ,相對的誤差為.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,設(shè)橢圓的左焦點為,短軸的兩個端點分別為,且,點上.

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓和圓分別相切于,兩點,當(dāng)面積取得最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面真角坐標(biāo)系xOy中,曲線的參數(shù)方程為t為參數(shù)),以原點O為極點,x軸正半軸為極軸,建立根坐標(biāo)系.曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)若曲線與曲線交于M,N兩點,直線OMON的斜率分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,為等邊三角形,

(1)若點分別是線段的中點,求證:平面平面;

(2)若二面角為直二面角,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點,若點在橢圓C上,則點稱為點M的一個橢點”.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若直線與橢圓C相交于A,B兩點,且A,B兩點的橢點分別為P,Q,以PQ為直徑的圓經(jīng)過坐標(biāo)原點,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點是該橢圓的左、右焦點,是上頂點,且是等腰直角三角形.

1)求的方程;

2)已知是坐標(biāo)原點,直線與橢圓相交于兩點,點上且滿足四邊形是一個平行四邊形,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)離心率為,其短軸長為2.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)如圖,A為橢圓C的左頂點,P,Q為橢圓C上兩動點,直線PO交AQ于E,直線QO交AP于D,直線OP與直線OQ的斜率分別為k1,k2,且k1k2(λ,μ為非零實數(shù)),求λ22的值.

查看答案和解析>>

同步練習(xí)冊答案