13.函數(shù)y=ax-4+5(a>0,a≠1)的圖象必經(jīng)過定點( 。
A.(0,5)B.(4,5)C.(3,4)D.(4,6)

分析 由指數(shù)函數(shù)的定義可知,當指數(shù)為0時,指數(shù)式的值為1,故令指數(shù)x-4=0,解得x=4,y=6,故得定點(4,6).

解答 解:令x-4=0,解得x=4,
此時y=a0+5=6,故得(4,6)
此點與底數(shù)a的取值無關(guān),
故函數(shù)y=ax-4+5(a>0且a≠1)的圖象必經(jīng)過定點(4,6)
故選:D.

點評 本題考點是指數(shù)型函數(shù),考查指數(shù)型函數(shù)過定點的問題.解決此類題通常是令指數(shù)為0取得定點的坐標.屬于指數(shù)函數(shù)性質(zhì)考查題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.密碼是通信雙方按約定的法則進行信息特殊變換的一種重要保密手段,明文在依靠一些對應法則(密匙)下變?yōu)槊芪,如明?9在密匙$\sqrt{x}+1$規(guī)則下轉(zhuǎn)變?yōu)槊芪?4.在一次信息傳送過程中,最小的信息單元由兩個數(shù)字組成(不足兩位的前面補0,超出兩位數(shù)的取后兩位),接受到的密文為9503,密匙為“2x+1”,則破譯后的明文為:4751.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,tanAsin2B=tanBsin2A,則△ABC一定是( 。┤切危
A.銳角B.直角C.等腰D.等腰或直角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在等比數(shù)列{an}中,a1=1,q=$\frac{1}{2}$,an=$\frac{1}{32}$,則n=( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,設(shè)$\frac{a}{c}$=$\sqrt{3$-1,$\frac{tanB}{tanC}$=$\frac{2a-c}{c}$,求角A,B,C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若(a-2)(a-1)x2+2(a-2)x-4<0對一切x∈R恒成立,則實數(shù)a的取值范圍是($\frac{6}{5}$,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若f(2x-1)=4x-1,則f(x)=( 。
A.f(x)=x2+2x,x∈(-1,+∞)B.f(x)=x2-1,x∈(-1,+∞)
C.f(x)=x2+2x,x∈(-∞,-1)D.f(x)=x2-1,x∈(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若定義在R上的偶函數(shù)y=f(x)在(-∞,-1]上是增函數(shù),則下列各式成立的是(  )
A.f($\sqrt{2}$)>f(-$\sqrt{2}$)B.f(-2)>f(3)C.f(3)<f(4)D.f($\sqrt{2}$)>f($\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an}滿足a1=1,a2=3,an+1=an+2an-1(n≥2),求an

查看答案和解析>>

同步練習冊答案