下列關(guān)于數(shù)列的說法:
①若數(shù)列{an}是等差數(shù)列,且p+q=r(p,q,r為正整數(shù))則ap+aq=ar;
②若數(shù)列{an}前n項和Sn=(n+1)2,則{an}是等差數(shù)列;
③若數(shù)列{an}滿足an+1=2an,則{an}是公比為2的等比數(shù)列;
④若數(shù)列{an}滿足Sn=2an-1,則{an}是首項為1,公比為2等比數(shù)列.
其中正確的個數(shù)為( 。
A.1B.2C.3D.4
①若數(shù)列{an}是等差數(shù)列,且p+q=r(p,q,r為正整數(shù))則ap+aq=ar,不是正確命題,應(yīng)ap+aq=2ar.故①錯誤;
②數(shù)列{an}前n項和Sn=(n+1)2,∴an=sn-sn-1=(n+1)2-n2=2n+1,當n=1代入Sn=(n+1)2得s1=a1=22=4,
an=2n+1,首先n=1不滿足,從n≥2開始是等比數(shù)列,故②正確;
③若數(shù)列{an}滿足an+1=2an,則{an}是公比為2的等比數(shù)列,不是真命題,如:0,0,0,…,故③錯誤;
④數(shù)列{an}滿足Sn=2an-1,,∴an=sn-sn-1=2an-1-(2an-1-1)=2an-2an-1,∴
an
an-1
=2,當n=1時得a1=1,
∴an=2n-1(n≥1),故④正確;
故選A;
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列關(guān)于數(shù)列的說法:
①若數(shù)列{an}是等差數(shù)列,且p+q=r(p,q,r為正整數(shù))則ap+aq=ar;
②若數(shù)列{an}前n項和Sn=(n+1)2,則{an}是等差數(shù)列;
③若數(shù)列{an}滿足an+1=2an,則{an}是公比為2的等比數(shù)列;
④若數(shù)列{an}滿足Sn=2an-1,則{an}是首項為1,公比為2等比數(shù)列.
其中正確的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省深圳市第二高級中學高二(上)期中數(shù)學試卷(文科)(解析版) 題型:選擇題

下列關(guān)于數(shù)列的說法:
①若數(shù)列{an}是等差數(shù)列,且p+q=r(p,q,r為正整數(shù))則ap+aq=ar;
②若數(shù)列{an}前n項和,則{an}是等差數(shù)列;
③若數(shù)列{an}滿足an+1=2an,則{an}是公比為2的等比數(shù)列;
④若數(shù)列{an}滿足Sn=2an-1,則{an}是首項為1,公比為2等比數(shù)列.
其中正確的個數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省東莞市南開實驗學校高二(上)期中數(shù)學試卷(文科)(解析版) 題型:選擇題

下列關(guān)于數(shù)列的說法:
①若數(shù)列{an}是等差數(shù)列,且p+q=r(p,q,r為正整數(shù))則ap+aq=ar;
②若數(shù)列{an}前n項和,則{an}是等差數(shù)列;
③若數(shù)列{an}滿足an+1=2an,則{an}是公比為2的等比數(shù)列;
④若數(shù)列{an}滿足Sn=2an-1,則{an}是首項為1,公比為2等比數(shù)列.
其中正確的個數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省深圳市第二高級中學高二(上)期中數(shù)學試卷(解析版) 題型:選擇題

下列關(guān)于數(shù)列的說法:
①若數(shù)列{an}是等差數(shù)列,且p+q=r(p,q,r為正整數(shù))則ap+aq=ar;
②若數(shù)列{an}前n項和,則{an}是等差數(shù)列;
③若數(shù)列{an}滿足an+1=2an,則{an}是公比為2的等比數(shù)列;
④若數(shù)列{an}滿足Sn=2an-1,則{an}是首項為1,公比為2等比數(shù)列.
其中正確的個數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案