【題目】已知cos(75°+α)=,α是第三象限角,
(1)求sin(75°+α) 的值.
(2)求cos(α-15°) 的值.
(3)求sin(195°-α)+cos(105o-α)的值.
【答案】(1);(2);(3) .
【解析】試題分析:(1)由, 是第三象限角,可得是第四象限角,根據(jù)同角三角函數(shù)之間的關(guān)系求解即可;(2)直接根據(jù)誘導(dǎo)公式可得結(jié)果;(3)根據(jù)誘導(dǎo)公式結(jié)合(2)的結(jié)論可得結(jié)果.
試題解析:(1)∵cos(75°+α)=>0,α是第三象限角,
∴75°+α是第四象限角,
且sin(75°+α)=-=-.
(2)cos(α-15°)= cos[90°-(75°+α)]= sin(75°+α)= -
(3)∴sin(195°-α) +cos(105o-α)
=sin[180°+(15°-α)]+cos[180o o-(75°+α)]
=-sin(15°-α) -cos(75°+α)
=-sin[90°-(75°+α)] -cos(75°+α)
=-2cos(75°+α)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了預(yù)防甲型流感,某學(xué)校對(duì)教室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí)室內(nèi)每立方米空氣中的含藥量與時(shí)間成正比例,藥物燃燒完后滿(mǎn)足,如圖所示,現(xiàn)測(cè)得藥物8燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量為6,請(qǐng)按題中所供給的信息,解答下列各題.
(1)求關(guān)于的函數(shù)解析式;
(2)研究表明,當(dāng)空氣中每立方米的含藥量不低于且持續(xù)時(shí)間不低于時(shí)才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為的半圓形(為圓心)鋁皮上截取一塊矩形材料,其中在直徑上,點(diǎn)在圓周上.
(1)設(shè),將矩形的面積表示成的函數(shù),并寫(xiě)出其定義域;
(2)怎樣截取,才能使矩形材料的面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)h(x)=ax3+bx2+cx+d(a≠0)圖象的對(duì)稱(chēng)中心為M(x0 , h(x0)),記函數(shù)h(x)的導(dǎo)函數(shù)為g(x),則有g(shù)′(x0)=0,設(shè)函數(shù)f(x)=x3﹣3x2+2,則f( )+f( )+…+f( )+f( )= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形BB1C1C所在平面與底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1 .
(1)求證:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2=4,直線(xiàn)l:y=x,則圓C上任取一點(diǎn)A到直線(xiàn)l的距離小于1的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項(xiàng)公式an;
(2)數(shù)列{bn}滿(mǎn)足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測(cè)可知,進(jìn)入21世紀(jì)以來(lái),該產(chǎn)品的產(chǎn)量平穩(wěn)增長(zhǎng).記2009年為第1年,且前4年中,第年與年產(chǎn)量萬(wàn)件之間的關(guān)系如下表所示:
若近似符合以下三種函數(shù)模型之一: === .
(1)找出你認(rèn)為最適合的函數(shù)模型,并說(shuō)明理由,然后選取其中你認(rèn)為最適合的數(shù)據(jù)求出相應(yīng)的解析式;
(2)因遭受某國(guó)對(duì)該產(chǎn)品進(jìn)行反傾銷(xiāo)的影響,2015年的年產(chǎn)量比預(yù)計(jì)減少,試根據(jù)所建立的函數(shù)模型,確定2015年的年產(chǎn)量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=aln(x+1)+ x2﹣x,其中a為實(shí)數(shù).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 求證:2f(x2)﹣x1>0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com