在四棱錐中,⊥平面,,,,,的中點(diǎn).
(Ⅰ)證明:⊥平面;
(Ⅱ)若直線與平面所成的角和與平面所成的角相等,求四棱錐的體積.

(Ⅰ)略
(Ⅱ)四棱錐的體積為  

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
下列三個(gè)圖中,左邊是一個(gè)正方體截去一個(gè)角后所得多面體的直觀圖。右邊兩個(gè)是正視圖和側(cè)視圖.

(1)請(qǐng)?jiān)谡晥D的下方,按照畫三視圖的要求畫出該多面體的俯視圖(不要求敘述作圖過程);
(2)求該多面體的體積(尺寸如圖).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知棱長為的正方體中,M,N分別是棱CD,AD的中點(diǎn)。(1)求證:四邊形是梯形;(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AB∥CD,BA⊥AD,且CD=2AB.

(1)若AB=AD=,直線PB與CD所成角為
①求四棱錐P-ABCD的體積;
②求二面角P-CD-B的大。
(2)若E為線段PC上一點(diǎn),試確定E點(diǎn)的位置,使得平面EBD垂直于平面ABCD,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知△BCD中,∠BCD=90°,AB⊥平面BCD,E、F分別是AC、AD上的動(dòng)點(diǎn),且
求證:不論λ為何值,總有平面BEF⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖,在四棱錐中,平面平面,為等邊三角形,底面為菱形,,的中點(diǎn),。
 
(1)求證:平面;
(2) 求四棱錐的體積
(3)在線段上是否存在點(diǎn),使平面;  若存在,求出的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)如圖,四棱錐的底面是正方形,,點(diǎn)在棱上.
(Ⅰ)求證:平面;   
(Ⅱ)當(dāng)的中點(diǎn)時(shí),求四面體體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下面三個(gè)圖中,右面的是一個(gè)長方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在左面畫出(單位:cm).


(1)在正視圖下面,按照畫三視圖的要求畫出該多面體的俯視圖;
(2)按照給出的尺寸,求該多面體的體積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下圖是一幾何體的直觀圖、正(主)視圖、側(cè)(左)視圖、俯視圖

(1)若的中點(diǎn),求證平面;
(2)求平面與平面所成的二面角(銳角)的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案