如圖,EA是圓O的切線,割線EB交圓O于點C,C在直徑AB上的射影為D,CD=2,BD=4,則EA=
 
考點:與圓有關(guān)的比例線段
專題:立體幾何
分析:由相交弦定理,得CD2=AD•BD,由△BDC∽△BAE,得
BD
BA
=
CD
AE
,由此能求出AE.
解答: 解:由相交弦定理,得CD2=AD•BD,
即22=AD×4,
解得AD=1,∴AB=1+4=5,
∵EA是圓O的切線,C在直徑AB上的射影為D,
∴△BDC∽△BAE,
BD
BA
=
CD
AE
,
∴AE=
BA•CD
BD
=
5×2
4
=
5
2

故答案為:
5
2
點評:本題考查與圓有關(guān)的線段長的求法,是中檔題,解題時要注意相交弦定理的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m>0,m≠
17
-1
2
,直線l1:y=m與函數(shù)y=|log2x|的圖象從左至右相交于點A,B,直線l2:y=
4
m+1
與函數(shù)y=|log2x|的圖象從左至右相交于點C,D,記線段AC和BD在x軸上的投影程長度分別為a,b,當m變化時,
b
a
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一次函數(shù)y=-x的圖象與它的反函數(shù)的圖象重合,試寫出一個非一次函數(shù)的函數(shù),使它的圖象與其反函數(shù)的圖象重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a3=4,a6=-32,求:
(1)a8
(2)S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線y=x+b與橢圓
x2
4
+y2=1交于A、B兩點.
(1)若點P(m,n)為弦AB的中點,且m+n=3,求b的值;
(2)記△AOB的面積為S,當S=1時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等腰Rt△ABC中,∠C=90°.
(Ⅰ)在線段BC上任取一點M,求使∠CAM<30°的概率;
(Ⅱ)在∠CAB內(nèi)任作射線AM,求使∠CAM<30°的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(lnx)2-lnx-2的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為正方形,且PA=AD=2,E為棱AD的中點.
(1)求證:平面PCE⊥平面PBC;
(2)求二面角E-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:等差數(shù)列{an}中,a1=1,S3=9,其前n項和為Sn
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
2n
(n+1)Sn
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案