已知橢圓:的一個焦點是(1,0),兩個焦點與短軸的一個端點構(gòu)成等邊三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(4,0)且不與坐標軸垂直的直線交橢圓兩點,設(shè)點關(guān)于軸的對稱點為.

(ⅰ)求證:直線軸上一定點,并求出此定點坐標;

(ⅱ)求△面積的取值范圍.

解:(Ⅰ)因為橢圓的一個焦點是(1,0),所以半焦距=1.

因為橢圓兩個焦點與短軸的一個端點構(gòu)成等邊三角形.

所以,解得所以橢圓的標準方程為. ……………4分                

(Ⅱ)(i)設(shè)直線聯(lián)立并消去得:.

,,,

.  由A關(guān)于軸的對稱點為,得,根據(jù)題設(shè)條件設(shè)定點為,0),得,即.所以

即定點(1 , 0). ……………8分

(ii)由(i)中判別式,解得.     可知直線過定點 (1,0).

所以   得,  令,得,當時,.

上為增函數(shù). 所以 ,

.故△OA1B的面積取值范圍是.  ……………12分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C的一個焦點F與拋物線y2=12x的焦點重合,且橢圓C上的點到焦點F的最大距離為8.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點P(m,n)是橢圓C上的一動點,求直線l:mx+ny=1被圓O:x2+y2=1所截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點O、半徑是
a2+b2
的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(
2
,0)
,其短軸的一個端點到點F的距離為
3

(1)求橢圓C和其“準圓”的方程;
(2)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍;
(3)在橢圓C的“準圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點O、半徑是
a2+b2
的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(
2
,0)
,其短軸的一個端點到點F的距離為
3

(1)求橢圓C和其“準圓”的方程;
(2)過橢圓C的“準圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,求l1,l2的方程;
(3)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的一個焦點為F(0,1),過點F且垂直于長軸的直線被橢圓C截得的弦長為
2
;P,Q,M,N為橢圓C上的四個點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若
PF
FQ
,
MF
FN
PF
FM
=0
,求四邊形PMQN的面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省高三3月月考數(shù)學試卷(解析版) 題型:解答題

(本小題滿分15分)

給定橢圓C:,稱圓心在原點O、半徑是的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為,其短軸的一個端點到點的距離為

(1)求橢圓C和其“準圓”的方程;

(2)若點是橢圓C的“準圓”與軸正半軸的交點,是橢圓C上的兩相異點,且軸,求的取值范圍;

(3)在橢圓C的“準圓”上任取一點,過點作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

 

查看答案和解析>>

同步練習冊答案