如圖,在邊長為5的正方形中隨機撒1000粒黃豆,有200粒落到陰影部分,據(jù)此估計陰影部分的面積為
 
考點:幾何概型
專題:概率與統(tǒng)計
分析:先求出正方形的面積為25,設陰影部分的面積為x,由概率的幾何概型知陰影部分面積為正方形面積的
200
1000
=
1
5
,由此能求出該陰影部分的面積.
解答: 解:設陰影部分的面積為x,
由概率的幾何概型知,則
200
1000
=
1
5
=
x
25
,
解得x=5.
故答案為:5
點評:本題考查概率的性質和應用;每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概型,可以用來求不規(guī)則圖形的面積.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知θ∈(0,π),且sinθ+cosθ=
1
3
,求sinθ-cosθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(
3
cosωx,sinωx),
b
=(sinωx,0)
,(ω>0)且函數(shù)f(x)=(
a
+
b
)•
b
-
1
2
的最小正周期為π.
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)若函數(shù)y=f(
x
2
+
π
3
),x∈(
π
2
,3π)
的圖象與直線y=a的交點的橫坐標成等比數(shù)列,試求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求1.02δ的近似值(精確到小數(shù)點后三位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin(
π
2
-x)的圖象( 。
A、關于x軸對稱
B、關于y軸對稱
C、關于原點對稱
D、關于直線x=
π
2
對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義運算
ab
cd
=ad+bc
(1)若
3
sin
x
4
1
cos2
x
4
cos
x
4
=0,求cos(
2
3
π-x)的值;
(2)記f(x)=
3
sin
x
4
cos2
x
4
1cos
x
4
,在△ABC中,有A,B,C滿足條件:sinAcosB-cosBsinC=cosCsinB-cosBsinA,求函數(shù)f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點為F,過點F作與x軸垂直的直線l交兩漸近線于A,B兩點,且與雙曲線在第一象限的交點為P,設O為坐標原點,若
OP
OA
OB
(λ,μ∈R),λ•μ=
3
16
,則雙曲線的離心率為( 。
A、
2
3
3
B、
3
5
5
C、
3
2
2
D、
9
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知圓E:(x+
3
)2+y2
=16,點F(
3
,0)
,P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(Ⅰ)求動點Q的軌跡Γ的方程;
(Ⅱ)設直線l與(Ⅰ)中軌跡Γ相交于A,B兩點,直線OA,l,OB的斜率分別為k1,k,k2(其中k>0).△OAB的面積為S,以OA,OB為直徑的圓的面積分別為S1,S2.若k1,k,k2恰好構成等比數(shù)列,求
S1+S2
S
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,且a1=12,a6=27.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an+2n}的前n項和Sn

查看答案和解析>>

同步練習冊答案