已知函數(shù)y=Asin(ωx+φ)+n的最大值為4,最小值是0,最小正周期是,直線x=是其圖象的一條對稱軸,若A>0,ω>0,0<φ<,則函數(shù)解析式為    
【答案】分析:利用三角函數(shù)的有界性求出最大值、最小值列出方程求出A,n;利用周期公式求出ω,利用整體思想將對稱軸代入sin(ωx+φ=)=1或-1,求出φ,求出解析式
解答:解:由題設得,a+n=4,-A+n=0,得A=2,n=2,ω=4,
且當x=時,sin(π+φ)=±1,故φ=
所求解析式為y=2sin(4x+)+2.
故答案為y=2sin(4x+)+2
點評:本題考查三角函數(shù)的有界性、周期公式T=、整體代換的思想求對稱性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=Asin(ωx+φ),在同一周期內,當x=
π
12
時,取最大值y=2,當x=
12
時,取得最小值y=-2,那么函數(shù)的解析式為( 。
A、y=
1
2
sin(x+
π
3
B、y=2sin(2x+
π
3
C、y=2sin(
x
2
-
π
6
D、y=2sin(2x+
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知函數(shù)y=Asin(ωx+∅)(A>0,ω>0,-π≤∅≤π)一個周期的圖象(如圖),則這個函數(shù)的一個解析式為( 。
A、y=2sin(
3
2
x+
π
2
)
B、y=2sin(3x+
π
6
)
C、y=2sin(3x-
π
6
)
D、y=2sin(3x-
π
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=Asin(ωx+?)+B(A>0,ω>0,|?|<
π
2
)
的周期為T,在一個周期內的圖象如圖所示,則φ=
-
π
6
-
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的一部分圖象如圖所示,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=Asin(ωx+∅)+k的最大值為4,最小值為0,最小正周期是
π
2
,在x∈[
π
24
,
π
12
]
上單調遞增,則下列符合條件的解析式是( 。

查看答案和解析>>

同步練習冊答案