已知m、n是兩條不同直線,α、β、γ是三個不同平面,以下有三種說法:
①若α∥β,β∥γ,則γ∥α; ②若α⊥γ,β∥γ,則α⊥β;
③若m⊥β,m⊥n,n?β,則n∥β.
其中正確命題的個數(shù)是


  1. A.
    3個
  2. B.
    2個
  3. C.
    1個
  4. D.
    0個
A
分析:由平行的傳遞性知①正確,兩個平行平面有一個和第三個平面垂直,則另一個也與第三個平面垂直,知②正確,當一條直線同時和一條直線和一個平面垂直時,線面之間的關系是平行或在平面上,知③正確
解答:由平行的傳遞性知若α∥β,β∥γ,則γ∥α,故①正確,
兩個平行平面有一個和第三個平面垂直,則另一個也與第三個平面垂直,
即若α⊥γ,β∥γ,則α⊥β,故②正確,
當一條直線同時和一條直線和一個平面垂直時,
線面之間的關系是平行或在平面上
即m⊥β,m⊥n,n?β,則n∥β,故③正確,
總上可知有3個命題正確,
故選:A
點評:本題考查空間中直線與平面的位置關系,本題是一個基礎題,考查線與面之間最基本的關系,注意容易漏掉的情況.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

10、已知m,n是兩條不同的直線,α是一個平面,有下列四個命題:
①①若m∥α,n∥α,則m∥n;②若m⊥α,n⊥α,則m∥n;
③若m∥α,n⊥α,則m⊥n;④若m⊥α,m⊥n,則n∥α.
其中真命題的序號有
②③
. (請將真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

4、已知m、n是兩條不同直線,α、β、γ是三個不同平面,以下有三種說法:
①若α∥β,β∥γ,則γ∥α; ②若α⊥γ,β∥γ,則α⊥β;
③若m⊥β,m⊥n,n?β,則n∥β.
其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

6、已知m,n是兩條不同的直線,α,β,γ是三個不同的平面,則下列命題正確的是

①若α⊥γ,α⊥β,則γ∥β      ②若m∥n,m?α,n?β,則α∥β
③若m∥n,m∥α,則n∥α      ④若n⊥α,n⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

14、已知m、n是兩條不同的直線,α、β是兩個不同的平面,有下列命題:
①若m?α,n∥α,則m∥n;②若m∥α,m∥β,則α∥β;
③若m⊥α,m⊥n,則n∥α;④若m⊥α,m⊥β,則α∥β;
其中真命題的個數(shù)是
1個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•惠州模擬)已知m,n是兩條不同直線,α,β,γ是三個不同平面,下列命題中正確的有

①若m∥α,n∥α,則m∥n;               ②若α⊥γ,β⊥γ,則α∥β;
③若m∥α,m∥β,則α∥β;               ④若m⊥α,n⊥α,則m∥n.

查看答案和解析>>

同步練習冊答案