6.已知$\frac{π}{4}<α<\frac{3π}{4},0<β<\frac{π}{4},cos(\frac{π}{4}-α)=\frac{3}{5},sin(\frac{3π}{4}+β)=\frac{5}{13}$,則sin(α+β)=( 。
A.$-\frac{56}{65}$B.$\frac{56}{65}$C.$-\frac{16}{65}$D.$\frac{16}{65}$

分析 利用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式、兩角差的余弦公式,求得sin(α+β)的值.

解答 解:∵$\frac{π}{4}<α<\frac{3π}{4},0<β<\frac{π}{4},cos(\frac{π}{4}-α)=\frac{3}{5},sin(\frac{3π}{4}+β)=\frac{5}{13}$,
∴$\frac{π}{4}$-α∈(-$\frac{π}{2}$,0),$\frac{3π}{4}$+β∈($\frac{π}{2}$,π),∴sin($\frac{π}{4}$-α)=$\sqrt{{1-cos}^{2}(\frac{π}{4}-α)}$=-$\frac{4}{5}$,cos($\frac{3π}{4}$+β)=-$\sqrt{{1-sin}^{2}(\frac{3π}{4}+β)}$=-$\frac{12}{13}$,
則sin(α+β)=sin[($\frac{3π}{4}$+β)-($\frac{π}{4}$-α)-$\frac{π}{2}$]=-cos[($\frac{3π}{4}$+β)-($\frac{π}{4}$-α)]=-cos($\frac{3π}{4}$+β)cos($\frac{π}{4}$-α)-sin($\frac{3π}{4}$+β)sin($\frac{π}{4}$-α)
=-$\frac{12}{13}$•$\frac{3}{5}$-$\frac{5}{13}$•(-$\frac{4}{5}$)=-$\frac{16}{65}$,
故選:C.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式、兩角差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.向量$\vec a=({-1,1})$,$\vec b=({1,0})$,若$({\vec a-\vec b})⊥({2\vec a+λ\vec b})$,則λ=( 。
A.2B.-2C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.讀程序(如圖)

(Ⅰ)畫出程序框圖;
(Ⅱ)當輸出的y的范圍大于1時,求輸入的x值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=a2-x-8(實數(shù)a>0,a≠1).
(1)判斷函數(shù)f(x)的奇偶性并證明;
(2)若x∈[1,+∞),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.半徑為1m的圓中,60°的圓心角所對的弧的長度為( 。
A.$\frac{π}{6}$mB.$\frac{π}{3}$mC.$\frac{2π}{3}$mD.1m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某研究所計劃利用“神七”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載若干件新產(chǎn)品A、B,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預(yù)計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:
每件產(chǎn)品A每件產(chǎn)品B
研制成本、搭載
費用之和(萬元)
2030計劃最大資金額
300萬元
產(chǎn)品重量(千克)105最大搭載重量110千克
預(yù)計收益(萬元)8060
如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預(yù)計收益達到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如果存在非零常數(shù)C,對于函數(shù)y=f(x)定義域上的任意x,都有f(x+C)>f(x)成立,那么稱函數(shù)為“Z函數(shù)”.
(Ⅰ)若g(x)=2x,h(x)=x2,試判斷函數(shù)g(x)和h(x)是否是“Z函數(shù)”?若是,請證明:若不是,主說明理由:
(Ⅱ)求證:若y=f(x)(x∈R)是單調(diào)函數(shù),則它是“Z函數(shù)”;
(Ⅲ)若函數(shù)f(x)=ax3+2x2+3是“Z函數(shù)”,求實數(shù)a滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=2-x+x,則g(2)=$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(Ι)已知:復(fù)數(shù)z1滿足(z1-2)(1+i)=1-i(i為虛數(shù)單位),復(fù)數(shù)z2的虛部為2,z1•z2是實數(shù),求z2
(Ⅱ)已知:雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線方程是y=$\sqrt{3}x$,它的一個焦點在拋物線y2=24x的準線上,求雙曲線的標準方程.

查看答案和解析>>

同步練習(xí)冊答案