OA
=
a
OB
=
b
,則∠AOB平分線上的向量
OM
=( 。
A.
a
|
a
|
+
b
|
b
|
B.λ(
a
|
a
|
+
b
|
b
|
)
,λ由
OM
確定
C.
a
+
b
|
a
+
b
|
D.
|
b
|
a
+|
a
|
b
|
a
|+|
b
|
OA
=
a
OB
=
b

OA
|
OA
|
=
a
|
a
|
,
OB
|
OB
|
=
b
|
b
|

∴以
OA
|
OA
|
,
OB
|
OB
|
為鄰邊做平行四邊形OACB也為菱形
∴OC平分∠AOB
∴根據(jù)向量加法的平行四邊形法則
可得
OC
=
OA
|
OA
|
+
OB
|
OB
|

OM
OC
共線
∴由共線定理可得存在唯一的實(shí)數(shù)λ使得
OM
OC
=λ(
a
|
a
|
+
b
|
b
|
)(λ由
OM
確定)
故答案選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個(gè)頂點(diǎn)為D,再以O(shè)C、OD為鄰邊作平行四邊形,它的第四個(gè)頂點(diǎn)為H.
(1)若
OA
=
a
,
OB
=
b
OC
=
c
,
OH
=
h
,試用
a
、
b
、
c
表示
h

(2)證明:
AH
BC
;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示|
h
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是線段AB外一點(diǎn),若
OA
=
a
,
OB
=
b

(1)設(shè)點(diǎn)A1、A2是線段AB的三等分點(diǎn),△OAA1、△OA1A2及△OA2B的重心依次為G1、G2、G3,試用向量
a
、
b
表示
OG1
+
OG2
+
OG3
;
(2)如果在線段AB上有若干個(gè)等分點(diǎn),你能得到什么結(jié)論?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

OA
=
a
,
OB
=
b
,則∠AOB平分線上的向量
OM
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖,設(shè)點(diǎn)P,Q是線段AB的三等分點(diǎn),若
OA
=
a
,
OB
=
b
,試用
a
b
表示
OP
,
OQ
,并判斷
OP
+
OQ
OA
+
OB
的關(guān)系;
(2)受(1)的啟示,如果點(diǎn)A1,A2,A3,…,An-1是AB的n(n≥3)等分點(diǎn),你能得到什么結(jié)論?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△OAB中,C是AB邊上一點(diǎn),且
BC
CA
=λ(λ>0),若
OA
=
a
,
OB
=
b
,用
a
、
b
表示
OC

查看答案和解析>>

同步練習(xí)冊(cè)答案