(本題滿分16分,第(1)小題8分,第(2)小題8分)
己知雙曲線的中心在原點,右頂點為(1,0),點、Q在雙曲線的右支上,點 (,0)到直線的距離為1.
(1)若直線的斜率為且有,求實數(shù)的取值范圍;
(2)當時,的內(nèi)心恰好是點,求此雙曲線的方程.
(Ⅰ) 或; (Ⅱ)
設(shè)直線的方程為:,…………………2分
由點到直線的距離為可知:
得到,…………………5分
因為,所以,
所以 ,或
所以 或;…………………8分
(2)當時,,
由于點到直線的距離為,所以直線的斜率,……10分
因為點為的內(nèi)心,故是雙曲線上關(guān)于軸對稱的兩點,所以軸,不妨設(shè)直線交軸于點,則,
所以點的坐標為,…………………12分
所以兩點的橫坐標均為,把代入直線的方程:,得,所以兩點的坐標分別為:,
設(shè)雙曲線方程為:,把點的坐標代入方程得到
,…………………15分
所以雙曲線方程為:…………………16分
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分,第一小題8分;第二小題8分)
已知是軸正方向的單位向量,設(shè)=, =,且滿足.
求點的軌跡方程;
過點的直線交上述軌跡于兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三第三次月考試題文科數(shù)學(xué) 題型:解答題
. (本題滿分16分,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)
已知公差大于零的等差數(shù)列的前項和為,且滿足,,
(1)求數(shù)列的通項公式;
(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù);
(3)若(2)中的的前項和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市長寧區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)
在平行四邊形中,已知過點的直線與線段分別相交于點。若。
(1)求證:與的關(guān)系為;
(2)設(shè),定義在上的偶函數(shù),當時,且函數(shù)圖象關(guān)于直線對稱,求證:,并求時的解析式;
(3)在(2)的條件下,不等式在上恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(理) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)
設(shè)、為坐標平面上的點,直線(為坐標原點)與拋物線交于點(異于).
(1) 若對任意,點在拋物線上,試問當為何值時,點在某一圓上,并求出該圓方程;
(2) 若點在橢圓上,試問:點能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;
(3) 對(1)中點所在圓方程,設(shè)、是圓上兩點,且滿足,試問:是否存在一個定圓,使直線恒與圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分,第一小題8分;第二小題8分)
已知是軸正方向的單位向量,設(shè)=, =,且滿足.
(1) 求點的軌跡方程;
(2) 過點的直線交上述軌跡于兩點,且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com