己知,,,其中

(Ⅰ)若 ,求的值

(Ⅱ)若,求的值

 

【答案】

(Ⅰ)①(Ⅱ)

【解析】

試題分析:①

②由,得 

  

 

考點:本題主要考查已知三角函數(shù)值求角、數(shù)量積的定義、三角恒等變換。

點評:由三角函數(shù)值求角時,就注意角的范圍;三角恒等變換常用的方法像切化弦、倍角公式。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
x2+a
.請完成以下任務(wù):
(Ⅰ)探究a=1時,函數(shù)f(x)在區(qū)間[0,+∞)上的最大值.為此,我們列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請觀察表中y值隨x值變化的特點,解答以下兩個問題.
(1)寫出函數(shù)f(x),在[0,+∞)上的單調(diào)區(qū)間;指出在各個區(qū)間上的單調(diào)性,并對其中一個區(qū)間的單調(diào)性用定義加以證明.
(2)請回答:當(dāng)x取何值時f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下兩個步驟研究a=1時,函數(shù)f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判斷函數(shù)f(x)的奇偶性;
(2)結(jié)合已知和以上研究,畫出函數(shù)f(x)的大致圖象,指出函數(shù)的值域.
(Ⅲ)己知a=-1,f(x)的定義域為(-1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知空間兩條直線m,n,兩個平面α,β,給出下面四個命題:
①m∥n,m⊥α⇒n⊥α;    
②α∥β,m?α,n?β⇒m∥n;
③m∥n,m∥α⇒n∥α;      
④α∥β,m∥n,m⊥α⇒n⊥β;
其中正確命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三習(xí)題精編(3) 題型:解答題

己知向量互相垂直,其中.

(1)求的值;

(2)若的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆江西省蓮塘一中高三習(xí)題精編(3) 題型:解答題

己知向量互相垂直,其中.
(1)求值;
(2)若的值.

查看答案和解析>>

同步練習(xí)冊答案