精英家教網(wǎng)如圖,已知圓心坐標為(
3
,1)的圓M與x軸及直線y=
3
x分別相切于A,B兩點,另一圓N與圓M外切、且與x軸及直線y=
3
x分別相切于C、D兩點.
(1)求圓M和圓N的方程;
(2)過點B作直線MN的平行線l,求直線l被圓N截得的弦的長度.
分析:(1)圓M的圓心已知,且其與x軸及直線y=
3
x分別相切于A,B兩點,故半徑易知,另一圓N與圓M外切、且與x軸及直線y=
3
x分別相切于C、D兩點,由相似性易得其圓心坐標與半徑,依定義寫出兩圓的方程即可.
(2)本題研究的是直線與圓相交的問題,由于B點位置不特殊,故可以由對稱性轉化為求過A點且與線MN平行的線被圓截得弦的長度,下易解.
解答:解:(1)由于⊙M與∠BOA的兩邊均相切,故M到OA及OB的距離均為⊙M的半
徑,則M在∠BOA的平分線上,
同理,N也在∠BOA的平分線上,即O,M,N三點共線,且OMN為∠BOA
的平分線,
∵M的坐標為(
3
,1),∴M到x軸的距離為1,即⊙M的半徑為1,
則⊙M的方程為(x-
3
)
2
+(y-1)2=1
,(4分)
設⊙N的半徑為r,其與x軸的切點為C,連接MA,NC,
由Rt△OAM∽Rt△OCN可知,OM:ON=MA:NC,
2
3+r
=
1
r
得r=3,
則OC=3
3
,則⊙N的方程為(x-3
3
)
2
+(y-3)2=9
;(8分)
(2)由對稱性可知,所求的弦長等于過A點直線MN的平行線被⊙N截得的弦的長度,
此弦的方程是y=
3
3
(x-
3
)
,即:x-
3
y
-
3
=0,
圓心N到該直線的距離d=
3
2
,則弦長=2
r2-d2
=
33
點評:本題考查直線與圓的位置關系以及直線與圓相交的性質,屬于直線與圓的方程中綜合性較強的題型,題后注意題設中條件轉化的技巧.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知圓心坐標為M(
3
,1)
的⊙M與x軸及直線y=
3
x
均相切,切點分別為A、B,另一個圓⊙N與⊙M、x軸及直線y=
3
x
均相切,切點分別為C、D.
(1)求⊙M和⊙N的方程;
(2)過點B作直線MN的平行線l,求直線l被⊙N截得的弦的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:黑龍江省牡丹江一中10-11學年高一下學期期末考試數(shù)學(理) 題型:解答題

(本小題滿分12分)如圖,已知圓心坐標為的圓軸及直線分別相切于兩點,另一圓與圓外切,且與軸及直線分別相切于兩點.
(1)求圓和圓的方程;(2)過點作直線的平行線,求直線被圓截得的弦的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆江西南昌八一、中學、麻丘中學高二10月聯(lián)考數(shù)學卷(解析版) 題型:解答題

如圖,已知圓心坐標為的圓軸及直線均相切,切點分別為、,另一圓與圓、軸及直線均相切,切點分別為、

(1)求圓和圓的方程;

(2)過點作的平行線,求直線被圓截得的弦的長度;

 

查看答案和解析>>

科目:高中數(shù)學 來源:黑龍江省10-11學年高一下學期期末考試數(shù)學(理) 題型:解答題

(本小題滿分12分)如圖,已知圓心坐標為的圓軸及直線分別相切于兩點,另一圓與圓外切,且與軸及直線分別相切于兩點.

(1)求圓和圓的方程;(2)過點作直線的平行線,求直線被圓截得的弦的長度.

 

查看答案和解析>>

同步練習冊答案