13.若$tanθ=\sqrt{3}$,則$\frac{sinθ+cosθ}{sinθ-cosθ}$=( 。
A.$2+\sqrt{3}$B.$-2-\sqrt{3}$C.$2-\sqrt{3}$D.$-2+\sqrt{3}$

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.

解答 解:∵$tanθ=\sqrt{3}$,則$\frac{sinθ+cosθ}{sinθ-cosθ}$=$\frac{tanθ+1}{tanθ-1}$=$\frac{\sqrt{3}+1}{\sqrt{3}-1}$=2+$\sqrt{3}$,
故選:A.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓的長半軸為6,焦點(diǎn)在x軸上,離心率$e=\frac{{\sqrt{3}}}{2}$;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以橢圓內(nèi)一點(diǎn)M(4,2)為中點(diǎn)的弦所在的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.實數(shù)x大于$\sqrt{10}$,用不等式表示為( 。
A.$x<\sqrt{10}$B.$x≤\sqrt{10}$C.$x>\sqrt{10}$D.$x≥\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={0,1,2},集合N={y|y=2x,x∈M},則( 。
A.M∩N={0,2}B.M∪N={0,2}C.M⊆ND.M?N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}是公差不為零的等差數(shù)列a1=1,且a1,a2,a5成等比數(shù)列,{bn}為等比數(shù)列,數(shù)列{bn}的前n項和為Sn,${S_3}=\frac{13}{3}$,q=3.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)$f(x)=\frac{x-b}{x-a}$在區(qū)間(-∞,4]上是增函數(shù),則有( 。
A.a>b>4B.a>4>bC.4<a<bD.a<4<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的焦點(diǎn)是F1、F2,且點(diǎn)P是雙曲線上的一點(diǎn),若∠F1PF2=60°,求三角形F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{({a+1})x+1,x<1}\\{{x^2}-2ax+2,x≥1}\end{array}}$是R上的增函數(shù),則實數(shù)a的取值范圍是(  )
A.-1<a<1B.-1<a≤1C.$-1<a<\frac{1}{3}$D.$-1<a≤\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$,以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P在C1上,點(diǎn)Q在C2上,求|PQ|的最小值.

查看答案和解析>>

同步練習(xí)冊答案