已知圓C:關(guān)于直線對(duì)稱,圓心在第二象限,半徑為
(1)求圓C的方程;
(2)是否存在斜率為2的直線,截圓C所得的弦為AB,且以AB為直徑的圓過(guò)原點(diǎn),若存在,則求出的方程,若不存在,請(qǐng)說(shuō)明理由.
(1)(2)滿足條件的直線不存在

試題分析:(1)圓心為  2分
由題意:   4分
解得:(舍)
圓C的方程為   6分
(2)假設(shè)存在滿足要求的直線,設(shè)其方程為,
設(shè),由題意,  8分
得:(*)   10分
代入圓的方程得:
,該方程的兩根為   12分
代入              (*)得:
   14分
方程無(wú)解,滿足條件的直線不存在.   16分
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)直線與圓的位置關(guān)系,結(jié)合韋達(dá)定理來(lái)求解分析,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,設(shè)線段的長(zhǎng)度為1,端點(diǎn)在邊長(zhǎng)為2的正方形的四邊上滑動(dòng).當(dāng)沿著正方形的四邊滑動(dòng)一周時(shí),的中點(diǎn)所形成的軌跡為,若圍成的面積為,則         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓M:軸相切。
(1)求的值;
(2)求圓M在軸上截得的弦長(zhǎng);
(3)若點(diǎn)是直線上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線與圓M相切,
為切點(diǎn)。求四邊形面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

是圓O的直徑,為圓O上一點(diǎn),過(guò)作圓O的切線交延長(zhǎng)線于點(diǎn),若DC=2,BC=1,則       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,圓C的方程為x²+y²-8x+15=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的最大值是                

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

經(jīng)過(guò)三點(diǎn)的圓的方程是                 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如下圖,動(dòng)點(diǎn)C在⊙O的弦AB上運(yùn)動(dòng),AB=,連接OC,CD⊥OC交⊙O于D,則CD的最大值為_(kāi)____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線與圓交于不同的兩點(diǎn)A、B,O是坐標(biāo)原點(diǎn),且,則實(shí)數(shù)m的取值范圍是             

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

動(dòng)圓與定圓內(nèi)切,與定圓外切,A點(diǎn)坐標(biāo)為(1)求動(dòng)圓的圓心的軌跡方程和離心率;(2)若軌跡上的兩點(diǎn)滿足,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案