【題目】已知函數(shù)的定義域是,則實數(shù)的取值范圍是( )
A.
B.
C.
D.

【答案】C
【解析】因為函數(shù)的定義域為 ,所以 的解集為 , 所以
解得 綜上,
【考點精析】本題主要考查了函數(shù)的定義域及其求法和二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零;當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 (a>b>0)的左、右焦點分別為F1,F2,點M(0,2)是橢圓的一個頂點,△F1MF2是等腰直角三角形.

(1)求橢圓的方程;

(2)過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1k2,且k1k2=8,證明:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x)=f′(1)ex1﹣f(0)x+ x2
(1)求f(x)的解析式及單調(diào)區(qū)間;
(2)若 ,求(a+1)b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(a﹣1)(ax﹣ax)(0<a<1).
(1)判斷f(x的奇偶性;
(2)用定義證明f(x)為R上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x,滿足f(﹣x)=﹣f(x),則稱f(x)為“局部奇函數(shù)”.
(1)已知二次函數(shù)f(x)=ax2+2x﹣4a(a∈R),試判斷f(x)是否為定義域R上的“局部奇函數(shù)”?若是,求出滿足f(﹣x)=﹣f(x)的x的值;若不是,請說明理由;
(2)若f(x)=2x+m是定義在區(qū)間[﹣1,1]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x|,g(x)=lg(ax2﹣4x+1),若對任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),則實數(shù)a的取值范圍是( 。
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將三顆骰子各擲一次,記事件A=“三個點數(shù)都不同”,B=“至少出現(xiàn)一個6點”,則條件概率P(A|B),P(B|A)分別是(
A. ,
B. ,
C. ,
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在(0, )上的函數(shù)f(x)的導函數(shù)為f′(x),且對于任意的x∈(0, ),都有f′(x)sinx<f(x)cosx,則(
A. f( )> f(
B.f( )>f(1)
C. f( )<f(
D. f( )<f(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:(2 +1)x+( +2)y+2 +2=0( ∈R),有下列四個結(jié)論:
直線l經(jīng)過定點(0,-2);
②若直線l在x軸和y軸上的截距相等,則 =1;
∈[1, 4+3 ]時,直線l的傾斜角q∈[120°,135°];
④當 ∈(0,+∞)時,直線l與兩坐標軸圍成的三角形面積的最小值為
其中正確結(jié)論的是(填上你認為正確的所有序號).

查看答案和解析>>

同步練習冊答案