7.設(shè)x,y,z∈R,若x+2y+z=4.
(1)求x2+y2+z2的最小值;
(2)求x2+(y-1)2+z2的最小值.

分析 利用柯西不等式即可求解.

解答 解:(1)由柯西不等式,
得:(x2+y2+z2)(12+22+12)≥(x+2y+z)2
即:6(x2+y2+z2)≥42
∴x2+y2+z2≥$\frac{8}{3}$,當(dāng)且僅當(dāng)$\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$時(shí)等號成立,
故:x2+y2+z2的最小值為$\frac{8}{3}$.
(2)由柯西不等式,
得:[x2+(y-1)2+z2](12+22+12)≥(x+2y-2+z)2
即:6[x2+(y-1)2+z2]≥4,
∴x2+(y-1)2+z2≥$\frac{2}{3}$,當(dāng)且僅當(dāng)$\frac{x}{1}=\frac{y-1}{2}=\frac{z}{1}$時(shí)等號成立,
故:x2+(y-1)2+z2的最小值為$\frac{2}{3}$.

點(diǎn)評 本題考查了柯西不等式的運(yùn)用能力,考查學(xué)生的計(jì)算能力.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,若$\overrightarrow{AB}•(\overrightarrow{CA}+\overrightarrow{CB})=0$,且$\overrightarrow{BA}•\overrightarrow{BC}={\overrightarrow{BC}^2}$,則$\overrightarrow{AB}與\overrightarrow{BC}$的夾角為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在五棱錐S-ABCDE中,SA⊥底面ABCDE,SA=AB=AE=2,BC=DE=$\sqrt{3}$,∠BAE=∠BCD=∠CDE=120°
(Ⅰ)求異面直線CD與SB所成的角(用反三角函數(shù)值表示);
(Ⅱ)求證BC⊥平面SAB;
(Ⅲ)用反三角函數(shù)值表示二面角B-SC-D的大小(本小問不必寫出解答過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)設(shè)函數(shù)f(x)=$\sqrt{|{x+1}|+|{x-2}|-a}$的定義域?yàn)镽,試求a的取值范圍;
(2)已知實(shí)數(shù)x,y,z滿足x+2y+3z=1,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=x2+ax-lnx,其中實(shí)數(shù)a為常數(shù).
(1)若a=2,求曲線y=f(x)在點(diǎn)P(1,f(1))處的切線方程;
(2)若函數(shù)g(x)=$\frac{f(x)}{{e}^{x}}$在區(qū)間(0,1]上是減函數(shù),其中e為自然對數(shù)的底數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線l與拋物線C:y2=2x交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若直線OA,OB的斜率k1,k2滿足${k_1}{k_2}=\frac{2}{3}$,則l一定過點(diǎn)(  )
A.(-3,0)B.(3,0)C.(-1,3)D.(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)是定義在區(qū)間(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足xf′(x)+2f(x)>0,則不等式$\frac{(x+2016)f(x+2016)}{5}<\frac{5f(5)}{x+2016}$的解集為(  )
A.{x>-2011}B.{x|x<-2011}C.{x|-2011<x<0}D.{x|-2016<x<-2011}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平行四邊形ABCD中,$\overrightarrow{AC}•\overrightarrow{CB}$=0,$2{\overrightarrow{BC}^2}+{\overrightarrow{AC}^2}$-4=0,若將其沿AC折成直二面角D-AC-B,則三棱錐D-AC-B的外接球的表面積為4π.

查看答案和解析>>

同步練習(xí)冊答案