【題目】已知函數(shù)f(x)=x2+tx+1(其中實(shí)數(shù)t>0).
(1)已知實(shí)數(shù)x1,x2∈[﹣1,1],且x1<x2.若t=3,試比較x1f(x1)+x2f(x2)與x1f(x2)+x2f(x1)的大小關(guān)系,并證明你的結(jié)論;
(2)記g(x),若存在非負(fù)實(shí)數(shù)x1,x2,…xn+1,使g(x1)+g(x2)+…+g(xn)=g(xn+1)(n∈N*)成立,且n的最大值為8,求實(shí)數(shù)t的取值范圍.
【答案】(1)x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1);見(jiàn)解析(2)[22,25).
【解析】
(1)利用作差比較法,結(jié)合函數(shù)f(x)的單調(diào)性進(jìn)行求解即可;
(2)存在非負(fù)實(shí)數(shù)x1,x2,…xn+1,使g(x1)+g(x2)+…+g(xn)=g(xn+1)(n∈N*)成立,且n的最大值為8,因此有成立,求出g(x)的表達(dá)式,利用基本不等式,分類討論求出的最值,最后求出實(shí)數(shù)t的取值范圍.
(1)x1f(x1)+x2f(x2)﹣x1f(x2)﹣x2f(x1)=(x1﹣x2)(f(x1)﹣f(x2)),
∵t=3,
∴f(x)=x2+3x+1在[﹣1,1]上單調(diào)遞增,
由x1,x2∈[﹣1,1],且x1<x2知,f(x1)<f(x2),
∴(x1﹣x2)(f(x1)﹣f(x2))>0,
∴x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1);
(2)∵存在非負(fù)實(shí)數(shù)x1,x2,…xn+1,使g(x1)+g(x2)+…+g(xn)=g(xn+1)(n∈N*)成立,且n的最大值為8,
∴,
下面求的最值,
當(dāng)x=0時(shí),g(0)=1;
當(dāng)x>0時(shí),,
∵,
∴,
①當(dāng)t=1時(shí),g(x)=1,不合題意;
②當(dāng)0<t<1時(shí),,故函數(shù)g(x)的值域?yàn)?/span>,
可得,解得(不符,舍去);
③當(dāng)t>1時(shí),,故函數(shù)g(x)的值域?yàn)?/span>,
可得,解得22≤t<25;
綜上所述,實(shí)數(shù)t的取值范圍為[22,25).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“互聯(lián)網(wǎng)+”時(shí)代的今天,移動(dòng)互聯(lián)快速發(fā)展,智能手機(jī)(Smartphone)技術(shù)不斷成熟,尤其在5G領(lǐng)域,華為更以件專利數(shù)排名世界第一,打破了以往由美、英、日壟斷的前三位置,再次榮耀世界,而華為的價(jià)格卻不斷下降,遠(yuǎn)低于蘋果;智能手機(jī)成為了生活中必不可少的工具,學(xué)生是對(duì)新事物和新潮流反應(yīng)最快的一個(gè)群體之一,越來(lái)越多的學(xué)生在學(xué)校里使用手機(jī),為了解手機(jī)在學(xué)生中的使用情況,對(duì)某學(xué)校高二年級(jí)名同學(xué)使用手機(jī)的情況進(jìn)行調(diào)查,針對(duì)調(diào)查中獲得的“每天平均使用手機(jī)進(jìn)行娛樂(lè)活動(dòng)的時(shí)間”進(jìn)行分組整理得到如下的數(shù)據(jù):
使用時(shí)間(小時(shí)) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
所占比例 | 4% | 10% | 31% | 16% | 12% | 2% |
(1)求表中的值;
(2)從該學(xué)校隨機(jī)選取一名同學(xué),能否根據(jù)題目中所給信息估計(jì)出這名學(xué)生每天平均使用手機(jī)進(jìn)行娛樂(lè)活動(dòng)小于小時(shí)的概率?若能,請(qǐng)算出這個(gè)概率;若不能,請(qǐng)說(shuō)明理由;
(3)若從使用手機(jī)小時(shí)和小時(shí)的兩組中任取兩人,調(diào)查問(wèn)卷,看看他們對(duì)使用手機(jī)進(jìn)行娛樂(lè)活動(dòng)的看法,求這人都使用小時(shí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國(guó)有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國(guó)聞名,還大量遠(yuǎn)銷海外.近年來(lái)某手工藝品村制作的手工藝品在國(guó)外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過(guò)關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過(guò)關(guān)的概率為,且各手工藝品質(zhì)量是否過(guò)關(guān)相互獨(dú)立.
(1)求一件手工藝品質(zhì)量為B級(jí)的概率;
(2)若一件手工藝品質(zhì)量為A,B,C級(jí)均可外銷,且利潤(rùn)分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷,利潤(rùn)記為100元.
①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;
②記1件手工藝品的利潤(rùn)為X元,求X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是雙曲線的右支上一點(diǎn),分別為雙曲線的左右焦點(diǎn),則的內(nèi)切圓的圓心橫坐標(biāo)為( )
A. B. 2C. D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,且,.
(1)證明:平面;
(2)在線段上,是否存在一點(diǎn),使得二面角的大小為?如果存在,求的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).其中是自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)若不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三人在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門學(xué)科中任選3門.若同學(xué)甲必選物理,則下列說(shuō)法正確的是( )
A.甲、乙、丙三人至少一人選化學(xué)與全選化學(xué)是對(duì)立事件
B.甲的不同的選法種數(shù)為15
C.已知乙同學(xué)選了物理,乙同學(xué)選技術(shù)的概率是
D.乙、丙兩名同學(xué)都選物理的概率是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,使得對(duì)任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.
(1)求的解析式;
(2)若方程有兩個(gè)實(shí)根,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是邊長(zhǎng)為3的菱形,平面.
(1)求證:平面;
(2)若與平面所成角為,求二面角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com