互不相等的三個(gè)正數(shù)x1,x2,x3成等比數(shù)列,且點(diǎn)P1(logax1,logby1)P2(logax2,logby2),P3(logax3,logby3)共線(a>0且a≠0,b>且b≠1)則y1,y2,y3成( )
A.等差數(shù)列,但不等比數(shù)列
B.等比數(shù)列而非等差數(shù)列
C.等比數(shù)列,也可能成等差數(shù)列
D.既不是等比數(shù)列,又不是等差數(shù)列
【答案】分析:根據(jù)三點(diǎn)共線斜率相等,可求得=,根據(jù)x1,x2,x3成等比數(shù)列,進(jìn)而可推斷出=,當(dāng)三者不相等時(shí)可推斷出三者成等比數(shù)列,若三者相等也可能成等差數(shù)列.
解答:解:∵三點(diǎn)共線
=
=
∵x1,x2,x3成等比數(shù)列,
=
=
∴y1,y2,y3成等比數(shù)列,
若y1,y2,y3相等,
y1,y2,y3也成等差數(shù)列
∴y1,y2,y3可能成等比數(shù)列,也可能成差數(shù)列
故選C
點(diǎn)評(píng):本題主要考查了等比關(guān)系的確定和對(duì)數(shù)函數(shù)的性質(zhì).考查了學(xué)生綜合分析問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

互不相等的三個(gè)正數(shù)a、b、c成等差數(shù)列,又x是a、b的等比中項(xiàng),y是b、c的等比中項(xiàng),那么x2、b2、y2三個(gè)數(shù)(  )
A、成等差數(shù)列,非等比數(shù)列B、成等比數(shù)列,非等差數(shù)列C、既是等差數(shù)列,又是等比數(shù)列D、既不成等差數(shù)列,又不成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c為互不相等的三個(gè)正數(shù),函數(shù)f(x)可能滿足如下性質(zhì):
①f(x-a)為奇函數(shù);②f(x+a)為奇函數(shù);③f(x-b)為偶函數(shù);④f(x+b)為偶函數(shù).
類比函數(shù)y=sinx的對(duì)稱中心、對(duì)稱軸與周期的關(guān)系,某同學(xué)得出了如下結(jié)論:
(1)若滿足①②,則f(x)的一個(gè)周期為4a;(2)若滿足①③,則f(x)的一個(gè)周期為4|a-b|;(3)若滿足③④,則f(x)的一個(gè)周期為3|a-b|.
其中正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

互不相等的三個(gè)正數(shù)a,b,c成等差數(shù)列,又x是a、b的等比中項(xiàng),y是b、c的等比中項(xiàng),那么x2,b2,y2這三個(gè)數(shù)(  )

A.成等比數(shù)列而非等差數(shù)列

B.成等差數(shù)列而非等比數(shù)列

C.既成等比數(shù)列又成等差數(shù)列

D.既非等差數(shù)列又非等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a,b,c為互不相等的三個(gè)正數(shù),函數(shù)f(x)可能滿足如下性質(zhì):
①f(x-a)為奇函數(shù);②f(x+a)為奇函數(shù);③f(x-b)為偶函數(shù);④f(x+b)為偶函數(shù).
類比函數(shù)y=sinx的對(duì)稱中心、對(duì)稱軸與周期的關(guān)系,某同學(xué)得出了如下結(jié)論:
(1)若滿足①②,則f(x)的一個(gè)周期為4a;(2)若滿足①③,則f(x)的一個(gè)周期為4|a-b|;(3)若滿足③④,則f(x)的一個(gè)周期為3|a-b|.
其中正確結(jié)論的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市十一學(xué)校高三(上)暑期檢測(cè)數(shù)學(xué)試卷3(文科)(解析版) 題型:選擇題

已知a,b,c為互不相等的三個(gè)正數(shù),函數(shù)f(x)可能滿足如下性質(zhì):
①f(x-a)為奇函數(shù);②f(x+a)為奇函數(shù);③f(x-b)為偶函數(shù);④f(x+b)為偶函數(shù).
類比函數(shù)y=sinx的對(duì)稱中心、對(duì)稱軸與周期的關(guān)系,某同學(xué)得出了如下結(jié)論:
(1)若滿足①②,則f(x)的一個(gè)周期為4a;(2)若滿足①③,則f(x)的一個(gè)周期為4|a-b|;(3)若滿足③④,則f(x)的一個(gè)周期為3|a-b|.
其中正確結(jié)論的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案