定義一種運(yùn)算“&”:“規(guī)定1&1=2,同時(shí)規(guī)定:若m&n=k,則m&(n+1)=k+2”,試計(jì)算:1&2005=
4010
4010
分析:由題意可得,n值每增加1,1&(n+1)的增加2,可得1&(n+1)=2n,從而求得1&2005 的值.
解答:解:由題意可得 1&1=2,1&2=2+2=4,1&3=4+2=6,1&4=6+2=8,…
故n值每增加1,1&(n+1)的增加2,∴1&(n+1)=2n.
∴1&2005=2×2005=4010,
故答案為 4010.
點(diǎn)評(píng):本題主要考查新定義、簡(jiǎn)單的合情推理,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•廣東模擬)定義一種運(yùn)算△:n△m=n•am(m,n∈N,a≠0)
(1)若數(shù)列{an}(n∈N*)滿足an=n△m,當(dāng)m=2時(shí),求證:數(shù)列{an}為等差數(shù)列;
(2)設(shè)數(shù)列{cn}(n∈N*)的通項(xiàng)滿足cn=n△(n-1),試求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東模擬 題型:解答題

定義一種運(yùn)算△:n△m=n•am(m,n∈N,a≠0)
(1)若數(shù)列{an}(n∈N*)滿足an=n△m,當(dāng)m=2時(shí),求證:數(shù)列{an}為等差數(shù)列;
(2)設(shè)數(shù)列{cn}(n∈N*)的通項(xiàng)滿足cn=n△(n-1),試求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省江門市臺(tái)山僑中高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

定義一種運(yùn)算△:n△m=n•am(m,n∈N,a≠0)
(1)若數(shù)列{an}(n∈N*)滿足an=n△m,當(dāng)m=2時(shí),求證:數(shù)列{an}為等差數(shù)列;
(2)設(shè)數(shù)列{cn}(n∈N*)的通項(xiàng)滿足cn=n△(n-1),試求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣東省中山市紀(jì)念中學(xué)、深圳市外國語學(xué)校、廣州市執(zhí)信中學(xué)高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

定義一種運(yùn)算△:n△m=n•am(m,n∈N,a≠0)
(1)若數(shù)列{an}(n∈N*)滿足an=n△m,當(dāng)m=2時(shí),求證:數(shù)列{an}為等差數(shù)列;
(2)設(shè)數(shù)列{cn}(n∈N*)的通項(xiàng)滿足cn=n△(n-1),試求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案