精英家教網 > 高中數學 > 題目詳情
設函數y=f(x)的定義域為D,值域為B,如果存在函數x=g(t),使得函數y=f(g(t))的值域仍然是B,那么稱函數x=g(t)是函數y=f(x)的一個等值域變換.
有下列說法:
①若f(x)=2x+b,x∈R,x=t2-2t+3,t∈R,則x=g(t)不是f(x)的一個等值域變換;
②f(x)=|x|(x∈R),,則x=g(t)是f(x)的一個等值域變換;
③若f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R,則x=g(t)是f(x)的一個等值域變換;
④設f(x)=log2x(x>0),若x=g(t)=5t+5-t+m是y=f(x)的一個等值域變換,且函數f(g(t))的定義域為R,則m的取值范圍是m≤-2.
在上述說法中,正確說法的個數為( )
A.1個
B.2個
C.3個
D.4個
【答案】分析:已知等值域變換的定義,分別求出f(x)和g(x)的值域和定義域,對①②③④進行一一驗證,從而求解;
解答:解:①函數f(x)=2x+b,x∈R的值域為R,
∵x=t2-2t+3=(t-1)2+2≥2,
∴y=f(g(t))=2[(t-1)2+2]+b≥4+b,值域不一樣,
所以,x=g(t)不是f(x)的一個等值域變換,故①中結論是正確的;
②可得f(x)=|x|≥0,值域大于等于0,
,
∴y=f(g(t))=||=>0,值域大于0,
所以,x=g(t)不是f(x)的一個等值域變換,故②中結論是錯誤的;
③若f(x)=x2-x+1=(x-2+,
∵x=g(t)=2t,
∴y=f(g(t))=(2t-2+,
∴x=g(t)是f(x)的一個等值域變換,故③的結論是正確;
④f(x)=log2x(x>0),值域為R,
∵x=g(t)=5t+5-t+m是y=f(x)的一個等值域變換,
∴函數f(g(t))的定義域為R,值域也為R,
∴f(g(t))=log2(5t+5-t+m)的值域為R,可得5t+5-t+m≤0即可,所以m≤-(5t+5-t)≤-2,在R上恒成立,
∴m≤-2,故④正確,
綜上知,①③④是正確的
故選C;
點評:考查新定義,解題的關鍵的是能夠讀懂新定義,利用了整體代換的思想,是一道綜合題;
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數y=f(x)的定義域為R,并且滿足f(x+y)=f(x)+f(y),f(
13
)=1
,且當x>0時,f(x)>0.
(1)求f(0)的值;
(2)判斷函數的奇偶性;
(3)如果f(x)+f(2+x)<2,求x取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)的定義域為全體R,當x<0時,f(x)>1,且對任意的實數x,y∈R,有f(x+y)=f(x)f(y)成立,數列{an}滿足a1=f(0),且f(an+1)=
1
f(
-an
2an+1
)
(n∈N*
(Ⅰ)求證:y=f(x)是R上的減函數;          
(Ⅱ)求數列{an}的通項公式;
(Ⅲ)若不等式
k
(1+a1)(1+a2)…(1+an)
-
1
2n+1
≤0
對一切n∈N*均成立,求k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)的定義域為R+,若對于給定的正數k,定義函數:fk(x)=
k,f(x)≤k
f(x),f(x)>k
,則當函數f(x)=
1
x
,k=1
時,函數fk(x)的圖象與直線x=
1
4
,x=2,y=0圍成的圖形的面積為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•閔行區(qū)一模)(文)設函數y=f(x)的反函數是y=f-1(x),且函數y=f(x)過點P(2,-1),則f-1(-1)=
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•南匯區(qū)二模)設函數y=f(x)的定義域為R,對任意實數x,y都有f(x+y)=f(x)+f(y),當x>0時f(x)<0且f(3)=-4.
(1)求證:y=f(x)為奇函數;
(2)在區(qū)間[-9,9]上,求y=f(x)的最值.

查看答案和解析>>

同步練習冊答案