已知函數(shù)f(x)=x3-3x,x∈R,曲線y=f(x)在點(diǎn)P(x,f(x))處的切線方程為y=g(x),設(shè)h(x)=f(x)-g(x).
(Ⅰ)若x=2,求函數(shù)h(x)的解析式;
(Ⅱ)若x∈R,討論函數(shù)h(x)的單調(diào)性.
【答案】分析:(I)因?yàn)槭歉叽魏瘮?shù),所以用導(dǎo)數(shù)求得函數(shù)的切線的方程,即得g(x),從而得到h(x)
(II)先整理得到h(x)=x3-3x2x+2x3,再求導(dǎo),由導(dǎo)數(shù)的正負(fù)來確定其單調(diào)性,要注意x的影響.
解答:解:(I)f′(x)=3x2-3,f(2)=2,f′(2)=9
∴切線方程為:y-2=9(x-2)
∴g(x)=9x-16
∴h(x)=x3-12x+16
(II)設(shè)曲線y=f(x)在點(diǎn)P(x,f(x))處的切線方程為:y=(3x-3)x-2x3
∴g(x)=(3x-3)x-2x3
∴h(x)=x3-3x2x+2x3
∴h′(x)=3x2-3x2=3(x-x)(x+x)
令h′(x)=3x2-3x2=3(x-x)(x+x)<0
①當(dāng)x>0時(shí),h(x)在(-∞,-x]是增函數(shù),在[-x,,x]是減函數(shù),在[x,,+∞)是增函數(shù);
②當(dāng)x<0時(shí),h(x)在(-∞,-x]是增函數(shù),在[-x,,x]是減函數(shù),在[x,,+∞)是增函數(shù);
③當(dāng)x=0時(shí),h(x)在(-∞,+∞)是增函數(shù);
綜上:①當(dāng)x>0時(shí),h(x)的增區(qū)間是:(-∞,-x],[x,,+∞),減區(qū)間是:[-x,,x];
②當(dāng)x<0時(shí),h(x)的增區(qū)間是:(-∞,x],[-x,,+∞),減區(qū)間是:[x,,-x];
③當(dāng)x=0時(shí),h(x)的增區(qū)間是:(-∞,+∞).
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的幾何意義及用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,由于參數(shù)的存在,增大了題目的難度,應(yīng)注意分類討論.