【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;(Ⅱ)若c=,△ABC的面積為,求△ABC的周長.
【答案】(1) C= (2) △ABC的周長為+
【解析】試題分析:(1)由正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理化簡已知可得2cosCsinC=sinC,結(jié)合范圍C∈(0,π),解得cosC=,可得C的值.(2)由三角形的面積公式可求ab=3,利用余弦定理解得a+b的值,即可得解△ABC的周長.
解析:
(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0
利用正弦定理化簡得:2cosC(sinAcosB+sinBcosA)=sinC,
整理得:2cosCsin(A+B)=sinC,
即2cosCsin(π﹣(A+B))=sinC,2cosCsinC=sinC
∴cosC=,∴C=
(Ⅱ)由余弦定理得3=a2+b2﹣2ab,
∴(a+b)2﹣3ab=3,
∵S= absinC= ab=, ∴ab=16,
∴(a+b)2﹣48=3,∴a+b=,
∴△ABC的周長為+ .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.已知圓C的極坐標(biāo)方程為ρ=2sin θ,直線l的參數(shù)方程為 (t為參數(shù)),若l與C交于A,B兩點(diǎn).
(Ⅰ)求|AB|;
(Ⅱ)設(shè)P(1,2),求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形與等邊所在的平面相互垂直, ,點(diǎn)E,F分別為PC和AB的中點(diǎn).
(Ⅰ)求證:EF∥平面PAD
(Ⅱ)證明: ;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R的函數(shù)是偶函數(shù),且滿足上的解析式為,過點(diǎn)作斜率為k的直線l,若直線l與函數(shù)的圖象至少有4個公共點(diǎn),則實(shí)數(shù)k的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856262)
如圖所示,在斜三棱柱ABC-A1B1C1中,AB=BC=1,AA1=2,D是AC的中點(diǎn),AB⊥平面B1C1CB,∠BCC1=60°.
(Ⅰ)求證:AC⊥平面BDC1;
(Ⅱ)E是線段CC1上的動點(diǎn),判斷點(diǎn)E到平面AA1B1B的距離是否為定值,若是,求出此定值;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線.
(1)求曲線在點(diǎn)P(2,4)處的切線方程;
(2)求曲線過點(diǎn)P(2,4)的切線方程;
(3)求斜率為1的曲線的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的離心率為,右焦點(diǎn)為F,上頂點(diǎn)為A,且△AOF的面積為 (O為坐標(biāo)原點(diǎn)).
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上的一點(diǎn),過P的直線與以橢圓的短軸為直徑的圓切于第一象限內(nèi)的一點(diǎn)M,證明:|PF|+|PM|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=emx+x2-mx.
(1)證明:f(x)在(-∞,0)單調(diào)遞減,在(0,+∞)單調(diào)遞增;
(2)若對于任意x1,x2∈[-1,1],都有,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856312)[選修4-5:不等式選講]
已知函數(shù)f(x)=|x-m|-2|x-1|(m∈R).
(Ⅰ)當(dāng)m=3時(shí),求函數(shù)f(x)的最大值;
(Ⅱ)解關(guān)于x的不等式f(x)≥0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com